Oracle® Banking Enterprise Originations
Ul Extensibility Guide

Release 2.10.0.0.0
F29510-01

April 2020

ORACLE"



Oracle Banking Enterprise Originations Ul Extensibility Guide, Release 2.10.0.0.0
F29510-01
Copyright© 2017, 2020, Oracle and/or its affiliates.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their
respective owners.

Intel and Intel Inside are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are
used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Epyc, and
the AMD logo are trademarks or registered trademarks of Advanced Micro Devices. UNIXis a registered
trademark of The Open Group.

This software and related documentation are provided under a license agreement containing restrictions on use
and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license
agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,
distribute, exhibit, perform, publish or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you
find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs (including any operating system, integrated software, any
programs embedded, installed or activated on delivered hardware, and modifications of such programs) and
Oracle computer documentation or other Oracle data delivered to or accessed by U.S. Government end users
are "commercial computer software" or "commercial computer software documentation" pursuant to the
applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use,
reproduction, duplication, release, display, disclosure, modification, preparation of derivative works, and/or
adaptation of i) Oracle programs (including any operating system, integrated software, any programs embedded,
installed or activated on delivered hardware, and modifications of such programs), ii) Oracle computer
documentation and/or iii) other Oracle data, is subject to the rights and limitations specified in the license
contained in the applicable contract. The terms governing the U.S. Government’s use of Oracle cloud services are
defined by the applicable contract for such services. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management applications. Itis
not developed or intended for use in any inherently dangerous applications, including applications that may create
arisk of personal injury. If you use this software or hardware in dangerous applications, then you shallbe
responsible to take all appropriate failsafe, backup, redundancy, and other measures to ensure its safe use.
Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or
hardware in dangerous applications.

This software or hardware and documentation may provide access to or information about content, products,
and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim
allwarranties of any kind with respect to third-party content, products, and services unless otherwise set forth in
an applicable agreement between you and Oracle. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services,
except as set forth in an applicable agreement between you and Oracle.



Contents

Preface .l 14
AUAIENCE 14
Documentation Accessibility ... 14
Related Documents ... .. 14
CONVEN I ONS 14

1About This Guide ... .. ... 17

2 Objective and Scope ... .. ..l 19
2.1 OV IV W 19
2.2 Objective and SCOPe ... ... 19

2.2.1 Extensibility Objective ... .. 19
2.3 Complementary Artefacts ... ... 19
2.4 OUL Of SCOP ... 20

30verviewofUse Cases ... ... ... 21

3.1 Extensibility Use Cases ... .. ...l 21
3.1.1 ADF Screen Customization Using Ul Extensions ................................. 21
3.1.2 ADF Screen Customization Using MDS ... .. ... 22
3.1.3 Print Receipt Functionality ... 22

4 ADF Screen Customizations Using Ul Extensions ...................................... 25
4.1 Ul Extension Interface ... . ... 27
4.2 Default Ul Extension .. . 28
4.3 Ul Extension EXeCUtOr .. 29
4.4 Extension Configuration ... . 32
4.5 Customization EXamples ... 33

4.5.1 Replacing SKin .. 33



4.5.2 Changing the logo in the branding bar ... .. ... ... 35

4.5.3 Modifying foNts .. 35
4.5.4 Modifying iMages ... o 36
4.5.5 GraphiCs .. 36
4.5.6 Adding a simple field to a productscreen ... ... 36
4.5.7 Adding a complex field popup to a product screen (popup, table, tree,
PeGION, ) 37
4.5.8 Removing an existing field from a productscreen ... 37
4.5.9 Making certain product optional product fields mandatory or optional ....... 37
4.5.10 Adding a new column to an existing productgrid ................................ 37
4.5.11 Hiding columns from an existing productgrid ... 38
4.5.12 Graying out certain columns from an existing productgrid ..................... 39
4.5.13 Modifying properties of product table (rows or tablesummary) ................ 39
4.5.14 Adding a new section to an existing productscreen .._............_............ 39
4.5.15 Hiding a section from a productscreen ... 40
4.5.16 Adding a new tab to an existing product screen made oftabs ................ 40
4.5.17 Hiding a tab from a product screen made of multiple tabs ...................... 41
4.5.18 Adding new buttons or links ... .. 41
4.5.19 Overriding / Customizing the product behaviour on certain actions like
button clicks ortab-outs ... .. ...l 42
4.5.20 Overriding the product validation pattern ... ... 42
4.5.21 Overriding the product lengths (min/max) ... 42
4.5.22 Disable / Enable certain productfields ... ... .. ... ... 42
4.5.23 Change certain product fields to read-only either on load or based on cer-
tain coNditioNs ... . 42
4.5.24 Change label of existing productfields ... 42

4. 5. 25 DO validation 43



4.5.26 LOV Extension— LOV Delegate Pattern ... .. ... .. ... ... 43

4.6 Using the JSFF Utils .. 44
4.6.1 HowtoUse JSFF Utils ... .. 44
4.6.2 Sample JSFF Utils Code Snippet ... 44

5 ADF Screen Customizations Using MDS ... ... ... ... ... ... 47

5.1 Seeded Customization Concepts ... ... 47

5.2 Customization Layer ... ... 48

5.3 Customization Class ... 48

5.4 Enabling Application for Seeded Customization ... ... 50

5.5 Customization Project ... .. L 53

5.6 Customization Role and Context ... ... ... ... ... 54

5.7 Customization Layer Use Cases ... ... . 56
5.7.1 Adding a Ul Table Componenttothe Screen ... .. ... 56
5.7.2 Approvals Framework ... .. 70
5.7.3 Override the product managedBean ... ... ... 111

6 Human Task Screen Extension ... ... ... 113

6.1 Introduction ... . 113

6.2 Custom CSS SKiN ... .. 113
6.2.1 Create New ADF SKin ... ... 113
6.2.2 Apply New SKin 114

7 Receipt Printing ... . 117

T PrereqUISIte 117
7.1.1 Identify Node Element for Attributes in Print Receipt Template .............. 117
7.1.2 Receipt Format Template (.rf) ... 119

7.2 ConfiQUIratioN ... 120
7.2.1 Parameter Configuration in the BROPConfig.properties ....................... 120



7.2.2 Configuration in the ReceiptPrintReports.properties ............................. 121

7.3 Implementation .. 121
7.3 Default Nodes ... . 122
7.4 Special SCeNANIOS .. ... o 122
8 Extensibility Usage — OBP Localization Pack ............................................ 125
8.1 Localization Implementation Architectural Change ................................... 126
8.2 Customizing Ul Layer ... 127
8.2.1 JDeveloper and Project Customization ... 127
8.2.2 Generic Project Creation ... .. .. ... 133
8.2.3 MAR Creation ... .. ... 133
8.3 Source Maintenance and Build ... ... 141
8.3.1 Source Check-insto SVN ... ... 141
8.3.2 .marfiles Generated during Build ... ... 142
8.3.3 adf-config. Xml 142
8.4 Packaging and Deployment of Localization Pack ..................................... 142
9 Deployment Guideline ... ... 145
9.1 Customized Project Jars .. ... .. 145
9.2 Database ObjJeCts ... ... L 145

9.3 Extensibility Deployment .. 145



List of Figures

Figure 3—1 ADF Screen Extensions ... .. ... 21
Figure 3—2 ADF Screen Customization ... 22
Figure 3—3 Print Receipt Functionality ............ .. ... .. ... 23
Figure 4—1 Ul Extension Pre Hook and Post Hook Taskflow ............................... 26
Figure 4—2 Save Method in IntegrableTaskflowHelper ... .. .. ... ... 27
Figure 4-3 Example of Ul Extension ... .. ... .. . . 28
Figure 4—4 Example of Default Ul Extension ... ... ... ... 29
Figure 4-5 Ul Extension Executor Class Taskflow ... ... ... 30
Figure 4—6 Example of Ul Extension Executor Class .......................................... 31
Figure 4—7 Example of Ul Extension ExecutorClass .......................................... 32
Figure 4—8 Replacing SKin ... 34
Figure 4—9 Replacing SKin ... L 34
Figure 4—10 Example: Replacing sKin ... ... 35
Figure 4—11 Replacing the 100 ... ... 35
Figure 4—12 Example: To modify images ... 36
Figure 4-13 Example: To add a simple field to a productscreen ........................... 37
Figure 4—14 Example: To remove an existing field fromaregion .......................... 37
Figure 4—15 Example: To add a new column to an existing prouctgrid .................. 38
Figure 4—16 Example: To hide columns from an existing productgrid ................... 39
Figure 4—17 Example: To modify the properties of producttable ........................... 39
Figure 4—18 Example: To add a new section to an existing product screen ............ 40

Figure 4—19 Example: To add a new tab to existing product screen made of tabs ... 41
Figure 4—20 Example: To hide a tab from a product screen made of multiple tabs ...41

Figure 4-21 Example: To add new buttons orlinks ... ... 42



Figure 4-22 Example: To override the product validation pattern _.._._.................... 42

Figure 4—-23 LOV Extension— LOV Delegate Pattern ... ... .. ... 43
Figure 4—24 Sample Code Snippet ... .. 44
Figure 4-25 Example of JSSFF Utils ... . 44
Figure 5—1 Customization Application View ... .. 47
Figure 5-2 CustomizationLayerValues.xml ... . .. ... 48
Figure 5-3 Customization Class ... .. ... 49
Figure 5—4 Implementation for the abstract methods of CustomizationClass ........... 50
Figure 5-5 Enable Seeded Customizations ... ... ... 51
Figure 5—6 Adding com.ofss.fc.demo.ui.OptionCC.jar ... .. .. ... 52
Figure 5—7 Adding com.ofss.fc.demo.ui.OptionCC.OptionCC ... 52
Figure 5-8 Adf-config.xml .. . 53
Figure 5-9 Customization Developer ... ... .. . 54
Figure 5-10 Selecting Always Prompt for Role Selection on StartUp .................._. 55
Figure 5-11 View Customization Context ... .. .. ... . 56
Figure 5-12 Adding a Ul Table Component - Party Search screen .._..................._. 57
Figure 5-13 Adding a Ul Table Component - Related Party screen ._.................... 57
Figure 5-14 Creating Binding Bean Class ... ... . . ... 59
Figure 5-15 Create Event Consumer Class ... .. ... ... ... 60
Figure 5-16 Creating Managed Bean ... ... .. ... 60
Figure 5-17 Create Data Control ... ... 61

Figure 5-18 Adding View Object Binding to Page Definition - Add Tree Binding ....62
Figure 5-19 Adding View Object Binding to Page Definition - Update Root Data

SOUIMCE 63
Figure 5-20 Page Data Binding Definition - InsertItem _..................................... 64
Figure 5-21 Page Data Binding Definition - Create Action Binding ....................... 65
Figure 5-22 Edit Event Map ... .. 66



Figure 5-23 EventMap Editor ... .. 67

Figure 5-24 Add Ul Componentsto Screen ... ... . . 68
Figure 525 Application Navigator ... ... .. 69
Figure 5-26 Party Search ... . . 70
Figure 5-27 Contact Point Screen ... .. . . 71
Figure 5-28 Create Table .. .. ... . 72
Figure 5-29 Create Java Project ... .. .. .. 72
Figure 5-30 Create Domain Objects ... .. ... ... 73
Figure 5-31 Create Interface ... . . 73
Figure 5-32 Create Class .. ... ... 74
Figure 5-33 Set OBP Plugin Preferences ... . . . . . .. 74
Figure 5-34 Set OBP Plugin Preferences ... .. . . . ... 75
Figure 5-35 Set OBP Pugin Prefernces ... .. . .. .. 76
Figure 5-36 Create Application Service ... .. .. .. 77
Figure 5-37 Application Service Classes Generated ... 77
Figure 5-38 Modify Data Transfer Object (DTO) ..., 78
Figure 5-39 Generate Service and Facade Layer Sources ................................. 79
Figure 5—-40 Modify ContactExpiryApplicationServiceSpi.java ............................_. 80
Figure 5-41 Modify ContactExpiryApplicationServiceSpi.java ............................_. 81
Figure 5-42 Modify ContactExpiryApplicationServiceSpi.java ............................_. 82
Figure 5—-43 Java Packages .. ... ... . 82
Figure 5-44 Export Java Projectas JAR ... .. 83
Figure 5-45 Create ContactExpiry.hbm.xml ... 84
Figure 5-46 Configure hostapplicationlayer.properties ... ... 84
Figure 5-47 Configure ProxyFacadeConfig.properties ... 85
Figure 5-48 Configure JSONServiceMap.properties ... ... 85



10

Figure 5-49 Create Model Project ... .. .. . 86

Figure 5-50 Create Model Project - Configure Java Settings .............................. 87
Figure 5-51 Create Application Module ... .. .. .. 88
Figure 5-52 Set Package and Name of Application Module ._.._........................... 89
Figure 5-53 Summary of Application Module Created ... 90
Figure 5-54 Create View Object ... .. ... 91
Figure 5-55 View Attribute ... . 92
Figure 5-56 Application Module ... .. 93
Figure 5-57 Create View Object-Summary ... ... ... ... 94
Figure 5-58 Create View Controller Project ... ... . . .. 95
Figure 5-59 Name your Project ... .. . 96
Figure 5—60 Libraries and Classpath ... ... ... .. 97
Figure 5—61 Dependencies .. ... . . 97
Figure 5-62 Create Maintenance State Action Interface ... 98
Figure 5—63 Create Update State Action Class ... .. ... ... ... 99
Figure 5-64 Create Update State Action Class ... .. ... ... ... 100
Figure 5—65 DemoContactPoint.java displays the View Objects ........................ 101
Figure 5—66 DemoCreateContactPoint/ DemoUpdateContactPoint .................... 102
Figure 5—67 Create Contact Expiry DTO ... ... ... 102
Figure 5-68 Value Change Event Handler for the Expiry Date Ul Component ...... 103
Figure 5-69 Value Change Event Handlers for Existing Ul Components ............. 103
Figure 5—-70 Method to fetch Screen Data using Contact Expiry Proxy Service ..... 104
Figure 5-71 Create Managed Bean ... .. ... ... 104
Figure 5-72 Create Event Customer Class ... ... .. ... 105
Figure 5—73 Create Data Control ... . ... . 106
Figure 5-74 Generated contactPoint.jsffxml ... .. 107



Figure 5—75 Add an attributeValues binding ... ... 107

Figure 5—76 Create Attribute Binding ... .. 108
Figure 5—77 Add a methodAction binding ... .. 108
Figure 578 Create Action Binding ... 109
Figure 579 Select the Event ConsumerMethod ........ ... ... 110
Figure 5-80 Generated contactPoint.jsffxml .. . ... ... .. 110
Figure 5-81 P1041 - Contact Point Screen ... .. 111
Figure 6—1 Sample trinidad-skins.xml ... ... . . 113
Figure 6—-2 Package Structure ... ... . L 114
Figure 6—-3 Sample Data ... ... 114
Figure 6—4 Sample Implementation ... ... . 115
Figure 7—1 Input Property Files ... . 117
Figure 7-2 Build Path of Utility ... ... 118
Figure 7—3 Utility EXecution ... . 119
Figure 7—4 Excel Generation ... .. 119
Figure 7-5 Receipt Format Template ... . 120
Figure 7—6 Receipt Print Reports ... ... L 121
Figure 7—7 Sample of Print Receipt ... .. ... 122
Figure 8—1 Perfection Capture Screen ... .. 125
Figure 8-2 Localization Implementation Architectural Change ............................ 126
Figure 8—3 Package Structure ... ... . L 127
Figure 8—4 Customization of the JDeveloper ... ... . 128
Figure 8—-5 Customization of the JDeveloper ... ... 128
Figure 8—6 Configure Design Time Customizationlayer .................................... 129
Figure 8—7 Enabling Seeded Customization ........... ... 130
Figure 8-8 Library and Class Path ... ... 131

1



12

Figure 8—9 MDS Configuration ... ... L 132

Figure 8—10 MDS Configuration ... .. ... 133
Figure 8—11 MAR Creation ... ... 134
Figure 8—12 MAR Creation - Application Properties ........................................ 135
Figure 8—-13 MAR Creation - Create Deployment Profile ................................... 136
Figure 8—14 MAR Creation - MAR File Selection ... ... 137
Figure 8—15 MAR Creation - EnterDetails ... ... ... 138
Figure 8—16 MAR Creation - ADF Library Customization .................................. 139
Figure 8—17 MAR Creation - EditFile ... .. ... 140
Figure 8—18 MAR Creation - Application Assembly ... . ... ... ... ... 141
Figure 8—19 Package Deployment ... . L 143
Figure 9—1 Extensibility Deployment ... .. . . 146



List of Tables

Table 8—1 Path StrUCIUIe ... 141

13



Preface

This guide explains customization and extension of Oracle Banking Enterprise Originations.

This preface contains the following topics:

m Audience
m Documentation Accessibility
m Related Documents

m Conventions

Audience

This guide is intended for the users of Oracle Banking Enterprise Originations.

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at
http://www.oracle.com/us/corporate/accessibility/index.html.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit
http://www.oracle.com/us/corporate/accessibility/support/index.html#info or visit
http://www.oracle.com/us/corporate/accessibility/support/index.html#trs if you are hearing impaired.

Related Documents

For more information, see the following documentation:

m Forinstallation and configuration information, see the Oracle Banking Enterprise Originations
Localization Installation Guide - Silent Installation guide.

m Foracomprehensive overview of security, see the Oracle Banking Enterprise Originations Security
Guide.

m Forthe complete list of licensed products and the third-party licenses included with the license, see the
Oracle Banking Enterprise Originations Licensing Guide.

m Forinformation related to setting up a bank or a branch, and other operational and administrative
functions, see the Oracle Banking Enterprise Originations Administrator Guide.

m Forinformation on the functionality and features, see the respective Oracle Banking Enterprise
Originations Functional Overview documents.

m For recommendations of secure usage of extensible components, see the Oracle Banking Enterprise
Originations Secure Development Guide.

Conventions

The following text conventions are used in this document:

14


http://www.oracle.com/us/corporate/accessibility/index.html
http://www.oracle.com/us/corporate/accessibility/support/index.html#info
http://www.oracle.com/us/corporate/accessibility/support/index.html#trs

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated with an
action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for which you
supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in

monospace

examples, text that appears on the screen, or text that you enter.

15



16 | Oracle Banking Enterprise Originations Ul Extensibility Guide



1 About This Guide

This guide is applicable for the following products:

= Oracle Banking Platform
m Oracle Banking Enterprise Originations

= Oracle Banking Enterprise Default Management

References to Oracle Banking Platform or OBP in this guide apply to all the above mentioned products.

1 About This Guide |17



18 | Oracle Banking Enterprise Originations Ul Extensibility Guide



2 Objective and Scope

This chapter defines the objective and scope of this document.

2.1 Overview

Oracle Banking Platform (OBP) is designed to help banks respond strategically to today’s business
challenges, while also transforming their business models and processes to reduce operating costs and
improve productivity across both front and back offices. It is a one-stop solution for a bank that seeks to
leverage Oracle Fusion experience for its core banking operations, across its retail and corporate offerings.

OBP provides a unified yet scalable IT solution for a bank to manage its data and end-to-end business
operations with an enriched user experience. It comprises pre-integrated enterprise applications leveraging
and relying on the underlying Oracle Technology Stack to help reduce in-house integration and testing efforts.

2.2 Objective and Scope

Most product development can be accomplished through highly flexible system parameters and business
rules. Further competitive differentiation can be achieved through IT configuration and extension support. In
OBP, additional business logic required for certain services is not always a part of the core product
functionality but could be a client requirement. For these purposes, extension points and customization
support have been provided in the application code which can be implemented by the bank and / or by
partners, wherein the existing business logic can be added with or overridden by customized business logic.
This way the time consuming activity of custom coding to enable region specific, site specific or bank specific
customizations can be minimized.

2.2.1 Extensibility Objective

The broad guiding principles with respect to providing extensibility in OBP are summarized below:

m Strategic intent for enabling customers and partners to extend the application.

= Internal development uses the same principles for client specific customizations.

m Localization packs

m Extensions by Oracle Consultants, Oracle Partners, Banks or Bank Partners.

m Extensions through the addition of new functionality or modification of existing functionality.
m Planned focus on this area of the application. Hence, separate budgets specifically for this.
m Standards based - OBP leverages standard tools and technology

m Leverage large development pool for standards based technology.

m Developer tool sets provided as part of JDeveloper and Eclipse for productivity.

2.3 Complementary Artefacts

The document is a developer's extensibility guide and does not intend to work as a replacement of the
functional or technical specification, which would be the primary resource covering the following:

2 Objective and Scope |19



2.4 Out of Scope

m  OBP Zen training course
m OBP installation and configuration
m  OBP parameterization as part of implementation

m Functional solution and product user guide

References to plugin indicate the eclipse based OBP development plugin for relevant version of OBP being
extended. The plugin is not a product GA artefact and is a means to assist development. Hence, the same is
not covered under product support.

2.4 Out of Scope

The scope of extensibility does not intend to suggest that OBP is forward compatible.

20 | Oracle Banking Enterprise Originations Ul Extensibility Guide



3 Overview of Use Cases

The use cases that are covered in this document shall enable the developer in applying the discipline of
extensibility to OBP. While the overall support for customizations is complete in most respects, the same is
not a replacement for implementing a disciplined, thoughtful and well-designed approach towards
implementing extensions and customizations to the product.

3.1 Extensibility Use Cases

This section gives an overview of the extensibility topics and customization use cases to be covered in this
document. Each of these topics is detailed in the further sections.

3.1.1 ADF Screen Customization Using Ul Extensions

In OBP, additional business logic or Ul component changes might be required for certain ADF screen. This
additional logic is not part of the core product functionality, but could be a client requirement. For this purpose,
hooks have been provided in the application code wherein additional business logic can be added with custom
business logic.

Figure 3—1 ADF Screen Extensions

System

Implement post-hook

< <indude=> T 5t
functionalities

L
Develop UT
Extension ;
<<indude =>
Customization

Developer -
N

Implement pre-hook
functionalities

Note

Screen changes can be implemented using the Ul extensions or ADF
Screen Customization. It is recommended to use the Ul extensions
where possible as migration path to higher release of OBP is easier.

Ul Extension:

3 Overview of Use Cases | 21



3.1 Extensibility Use Cases

This hook resides in the ADF taskflow. This hook is present before as well as after the actual Ul event
execution. The additional business logic has to implement the interface I<taskflow_name>UIExt and extend
and override the default implementation Void<taskflow_name>UIExt provided for the taskflow. Multiple
implementations can be defined for a particular taskflow. The Ul extensions executor invokes all the
implementations defined for the particular taskflow both before and after the actual Ul event execution.

3.1.2 ADF Screen Customization Using MDS

OBP application may need to be customized for certain additional requirements. However, since these
additional requirements differ from client to client, and the base application functionality remains the same,
the code to handle the additional requirements is kept separate from the code of the base application. For this
purpose, Seeded Customizations (built using Oracle Meta-data Services framework) can be used to
customize an application.

When designing seeded customizations for an application, one or more customization layers need to be
specified. A customization layer is used to hold a set of customizations. A customization layer supports one
or more customization layer value which specifies the set of customizations to apply at runtime.

Figure 3—2 ADF Screen Customization

System

5 //—-—c:,mue Ag:;hw>
- Cont i Ap tion
Customization \\“‘—— C

Developer

This sesded customization
is done by configuring
one or multiple
customization layer

3.1.3 Print Receipt Functionality

OBP has many transaction screens in different modules where it is desired to print the receipt with different
details about the transaction. This functionality provides the print receipt button on the top right corner of the
screen which gets enabled on the completion of the transaction and can be used for printing of receipt of the
transaction details.

22 | Oracle Banking Enterprise Originations Ul Extensibility Guide



3.1 Extensibility Use Cases

Figure 3-3 Print Receipt Functionality

System

Customization
Developer

scope of badking bean

This is optional.
Daone in pageflow

3 Overview of Use Cases | 23



24 | Oracle Banking Enterprise Originations Ul Extensibility Guide



4 ADF Screen Customizations Using Ul
Extensions

This chapter describes how additional business logic can be added prior to (pre hook) and / or post the
execution (post hook) of a particular Ul event business logic on the Ul side. Extension prior to a Ul event
execution may be required for the purposes of additional input validation, input manipulation, custom logging,
and so on. A few examples in which the Ul extensions in the form of pre and post hook are required are
mentioned below.

A Ul extension in the form of a pre hook can be important in the following scenarios:

= Additional input validations

m Execution of business logic, which necessarily has to happen before going ahead with normal event
execution

m Request manipulation prior to making host call
A Ul extension in the form of a post hook can be important in the following scenarios:

m  Output response manipulation

m  Custom Ul components rendering, changing to read only

4 ADF Screen Customizations Using Ul Extensions | 25



Figure 4-1 Ul Extension Pre Hook and Post Hook Taskflow

Legend

Pre Post Hook, Consuttng Extensions.

If consuking needs to completely
hush the product functionaity,

then use customization mode and
replace the Ul component with
consutting version of the component

E fundTransferHandler : AbstractFundTransfertandier
Bank User - ]
7 : VoidFundTransferlExt
e oy ;
2: componentiameonCicntemal) _

3. preComponentilameOnClidk()

3

s _ ST
6 componentiameonCick _ | : )

7 : aeateDTONameForMethodiame()

8 : assemberCreateDTCNameOnMethodNems=()

o

0

11: executeHostCal)

12 populateVOforiethedhame)

13 : assemblerPopulateVOfoMethodhame

i u

20 : postComponenthlameOnCick)

2

2

The pre hook is provided after the invocation of Ulevent call inside the Abstract Taskflow Handler. The
extension method is provided with the ADF event and the Taskflow Handler Instance as parameters. The
handler instance may be required in such cases where the VO attributes or the Ul components need to be
accessed as a part of the customization.

The post hook is provided after the event business logic. Similar parameters are provided in the post
extension. Hooks are provided in handler and assembler methods, for taskflows using the Integrable
Taskflow framework. Hooks are provided in backing bean methods for all other taskflows.

26 | Oracle Banking Enterprise Originations Ul Extensibility Guide



4.1 Ul Extension Interface

Figure 4-2 Save Method in Integrable TaskflowHelper

Optionaly may execute save 1o repostory or
delegate the callto caling taskflow

st cal

| perT_C>
| ‘ ndle ; Abstra cler |

et Configuration
c
: / AT
— i / -
2:save :
; 3: saveData() 4:preSaveDatal) . ;
2 |
5 i |J
6 : saveData() — ;
7 ‘J !
3 postSaveData() |
° LJ
w &r. ;
11 2 :

For taskflows implementing the ADF Integrable Taskflow Framework, the pre and post hooks are provided for
the common Integrable taskflow helper methods. Refer to the above sequence diagram for the Save method
in IntegrableTaskflowHelper.

The following sections detail the important concepts which should be understood for extending in this Ul
layer.

4.1 Ul Extension Interface

The OBP ADF Taskflow Generator generates an interface for the extensions of a particular taskflow. The
interface name is of the form I<Taskflow_Name>UIExt. This interface has a pair of pre and post method
definitions for each public method present in the Abstract Taskflow Handler and the Integrable Taskflow
Helper. The signatures of these methods are:

public void pre<Method Name> (<Method Parameters>) throws
FatalException;
public void post<Method Name> (<Method Parameters>) throws
FatalException;

A single method is provided for Integrable Assembler. The signature as below:

public void assembler<Method Name>(<Method Parameters>) throws
FatalException;

A Ul extension class has to implement this interface. The pre method of the extension is executed before the
actual method and the post method of the extension is executed after the method.

The return type for certain methods are boolean (for example, public boolean preValidateData).

4 ADF Screen Customizations Using Ul Extensions | 27



4.2 Default Ul Extension

Figure 4-3 Example of Ul Extension

(8] Jaua EE - TaskTlows/com.ofssic iteskilows agent/sre/com/ofss/ic/ui/taskiows/agent/ag i Ag W=il|JTFﬂiava-Ecﬁpswg
File Edit Source Refactor MNavigate Search Project Run Window Help
i GlEiNeDENESR]ESR-0- WG eriEe P P BRI - §l G
Quick Access 1| [ | 9 Java EE | [ SVN Repository Exploring 57 Team Synchronizing > Plug-in Development 43 Debug (& Web
E IAgentDetailsUlExt.java &2 = a8 E
B % 1 package com.ofss.fc.ui.taskflows.agent.agentdetails.view.ext; a oz
2 B =
3@ import oracle.jbo.ViewObject;[] E|
15 -
168 /** o
17 * <>
18 * Extension hook for Managed Bean AgentDetails. The default implementation for this interface is the generated =}
19  * VoidAgentDetailsUIExt. Extensions should extend the VoidAgentDetailsUIExt instead of implementing this interface. rn
2 *</p> .
21 * E R
22 * fsee VoidAgentDetailsUIExt 2
23 ¥/
24 public interface IAgentDetailsUIExt extends IIntegrableTaskFlowUIExt<Object, AgentDetailsTaskFlowContext> { 5]
25 Q'"
268 /e
27 * This is the extension point for Managed Bean AgentDetailsAssembler The parameters related to this methed are same Ej
28 * as it is in the public method along with the instance of Managed Bean The javadec for the original method and the 8
29 * params can be seen from the See Also link. o B
EL] *
31 * fisee AgentDetailsAssember#OnFetchAgentDetails g0
32 *f
33 public void assemblerCreateAgentDetailsDTOForFetchAgentDetails(AgentDetailsDTO agentDetailsDTO, Viewdbject agentDetailsV0, Vier #*
34
358 /=
36 * This is the extension point for Managed Bean AgentDetailsAssembler The parameters related to this method are same
37 * as it is in the public method along with the instance of Managed Bean The javadoc for the original method and the
38 * params can be seen from the See Alsc link.
39 -
49 * fisee AgentDetailsAssember#0OnFetchAgentDetails
41 */
42 public void assemblerPopulateVOForFetchAgentDetails(AgentDetailsResponse agentDetailsResponse, ViewObject agentDetailsvo, View
43
a4= /**
45 * This is the extension point for Managed Bean AgentDetails The parameters related to this method are same as it is
46 * in the public method along with the instance of Managed Bean The javadoc for the original method and the params
a7 * can be seen from the See Also link.
48 -
a9 * fisee AgentDetails#inforCommandLinkOnClick
58 =/
51 public void preInforCommandLinkOnClick(IIntegrableTaskFlowHandler<Object, AgentDetailsTaskFlowContext> iIntegrableTaskFlowHan
52
53= /==
s4 * This is the extension point for Managed Bean AgentDetails The parameters related to this method are same as it is il
o S e b i mlod Voo el sl i F neeood P The Serdes Fo sle aootood —emblod oo N
< [} ] b
Writable Smart Insert ail

4.2 Default Ul Extension

The OBP plug-in generates a default extension for a particular taskflow in the form of the class

Void<Taskflow_Name>UIExt. This class implements the aforementioned Ul extension interface without

any business logic, that is, the implemented methods are empty.

The default extension is a useful and convenient mechanism to implement the pre and / or post extension
hooks for specific methods of a taskflow. Instead of implementing the entire interface, one should extend the
default extension class and override only the required methods with the additional business logic. Product
developers DO NOT implement any logic, including product extension logic, inside the default extension
classes. This is because the classes are auto-generated, reserved for product use, and get overwritten as a

part of a bulk generation process.

28 | Oracle Banking Enterprise Originations Ul Extensibility Guide



4.3 Ul Extension Executor

Figure 4-4 Example of Default Ul Extension

o
08 ava EE - TaskFlows/com.ofssfc.uitas ent/src/com/ofss/fe/uifta entdetails/view/ext/VoidAgentDetailsUTExt java - &Wﬂ
File Edit Source Refactor MNavigate Search Project Run Window Help
T Gl NrredssRES2 $-0- Q- G-6-@c - POEGENI@ R -5 GO
Quick Access || ['f | 9 Java EE | [ SVN Repository Exploring 57 Team Synchronizing > Plug-in Development 43 Debug (& Web
'E', VoidAgentDetailsUlExtjava i = a8 'E',
B % 1 backage com.ofss.fc.ui.taskflows.agent.agentdetails.view.ext; a oz
2 B =
3@ import oracle.jbo.ViewObject;[] E|
14 E =
158 /** o
16 * <p>
17 * Extension hook for taskflow AgentDetails The default for the extension points. Each public method for AgentDetails =}
18 * has corresponding pre and post methods. This default implementation returns and does nothing. Extenders are rn
19 * encouraged teo extend this class instead of implementing the interface as they would have to then implement all -
26 * methods. This class is provided for easing the writing of the extensions. =
21 = </p> =2
22 *
23 * @isee AgentDetails 5]
24 &
25 public class VoidAgentDetailsUIExt implements IAgentDetailsUIExt { 5
26
279 public VeidAgentDetailsUIExt() { &
28 super(}; i |
29 %
38 &°
e /==
32 * This is the extension point for Managed Bean AgentDetailsAssembler The parameters related to this method are same #*
33 * as it is in the public method along with the instance of Managed Bean The javadoc for the original method and the
34 * params can be seen from the See Alse link.
35 *
36 * fisee AgentDetailsAssember#OnFetchAgentDetails
37 =g
388 public void assemblerCreateAgentDetailsDTOForFetchAgentDetails(AgentDetailsDTO agentDetailsDTO, ViewObject agentDetailsvo, Vier
39
48
41= fEx
42 * This is the extension point for Managed Bean AgentDetailsAssembler The parameters related to this methed are same
a3 * as it is in the public method along with the instance of Managed Bean The javadec for the original method and the
44 * params can be seen from the See Also link.
45 *
46 * fisee AgentDetailsAssember#OnFetchAgentDetails
47 =y
485 public void assemblerPeopulateVOForFetchAgentDetails(AgentDetailsResponse agentDetailsResponse, ViewObject agentDetailsvo, View
49
58
518 /e
52 * This is the extension point for Managed Bean AgentDetails The parameters related to this method are same as it is I
53 * in the public method along with the instance of Managed Bean The javadoc for the original method and the params il
o PP L ISP - DU - | ;
Writable Smart Insert ail

4.3 Ul Extension Executor

The OBP plug-in for Eclipse generates a Ul extension executor interface and an implementation for the
executor interface. The naming convention for the generated executor classes which enable "extension
chaining" is shown below:

Interface : I<Taskflow Name>UIExtExecutor
Implementation : < Taskflow Name >UIExtExecutor

The Ul extension executor class, on load, creates an instance each of all the extensions defined in the Ul
extensions configuration. If no extensions are defined for a particular service, the executor creates an
instance of the default extension for the taskflow. The executor also has a pair of pre and post methods for
each method. These methods in turn call the corresponding methods of all the extension classes defined for
the taskflow.

4 ADF Screen Customizations Using Ul Extensions | 29



4.3 Ul Extension Executor

Figure 4-5 Ul Extension Executor Class Taskflow

fundTransferHandler : FundTransferdandler . FundTransferUiExtExecutor . UExtensionFactory

1: preSaveData()

¥

2 : getUIExtensions()

- IFundTransferlIExt

~d
m
=4
a
3
m
w
il
3
o
L=}
51
(=]

Lt 9 : getlUIExtensions()

=3

loop For each localization / consulting extension

)
Py
L

11 : postSaveData();

30 | Oracle Banking Enterprise Originations Ul Extensibility Guide




4.3 Ul Extension Executor

Figure 4-6 Example of Ul Extension Executor Class

=
| [ Java EE - TaskFlows/com.
Edit Source Refactor MNavigate Search Project Run Window Help
D @ e E s RS B@ I e e S |
Quick Access :| =4 | 9 Java EE | [ SVN Repository Exploring 57 Team Synchronizing > Plug-in Development 43 Debug (& Web
-E IAgentDetailsUlExtExecutorjava &2 =& ||
B % 1 package com.ofss.fc.ui.taskflows.agent.agentdetails.view.ext; a
5
3@ import oracle.jbo.ViewObject;[]
27
288 /**
29 * <p>
38 * ExtensionFactory hook for Managed Bean AgentDetails. Extension Factories should implement the
31 * IAgentDetailsUIExtExecuter
32 F &/p>
33 ¥ E
34 public interface IAgentDetailsUIExtExecutor extends IIntegrableTaskFlowUIExtExecutor<Object, AgentDetailsTaskFlowContext> {
35
368 o
37 * This is the extensien point for Managed Bean AgentDetailsAssembler The parameters related te this methed are same
38 * as it is in the public method along with the instance of Managed Bean The javadac for the original method and the
39 * params can be seen from the See Alse link.
48 *
41 * fisee AgentDetailsAssember#OnFetchAgentDetails B |
42 -
43 public void assemblerCreateAgentDetailsDTOForFetchAgentDetails(AgentDetailsDTO agentDetailsDTO, ViewObject agentDetailsvo, Vier
44
455 g
46 * This is the extension point for Managed Bean AgentDetailsAssembler The parameters related to this method are same
47 * as it is in the public method aleng with the instance of Managed Bean The javadoc for the original methed and the
43 * params can be seen from the See Also link.
49 *
5@ * fisee AgentDetailsAssember#OnFetchAgentDetails
51 *
52 public void assemblerPopulateVOForFetchAgentDetails(AgentDetailsResponse agentDetailsResponse, ViewObject agentDetailsvo, View
53
54 fEx
55 * This is the extension point for Managed Bean AgentDetails The parameters related to this method are same as it is
56 * in the public method along with the instance of Managed Bean The javadoc for the original method and the params
57 * can be seen from the See Also link.
58 *
59 * fisee AgentDetails#inforCommandlinkOnClick
60 */
&1 public void preInforCommandLinkOnClick(IIntegrableTaskFlowHandler<Object, AgentDetailsTaskFlowContext> iIntegrableTaskFlowHan:
62
638 g
64 * This is the extension point for Managed Bean AgentDetails The parameters related to this method are same as it is
65 * in the public method along with the instance of Managed Bean The javadoc fer the original method and the params
66 * can be seen from the See Also link. 8
. =
< m ] D
Writable Smart Insert 1:1 E

4 ADF Screen Customizations Using Ul Extensions | 31




4.4 Extension Configuration

Figure 4-7 Example of Ul Extension Executor Class

=
(8] Jaua EE - TaskTlows/com.ofssic iteskilows agent/sre/com/ofss/ic/ui/taskiows/agent/ag i gentDetailsUTExtE j -w
File Edit Source Refactor MNavigate Search Project Run Window Help
i GlEiNeDENESR]ESR-0- WG eriEe P P BRI - §l G
Quick Access || ['f | 9 Java EE | [ SVN Repository Exploring 57 Team Synchronizing > Plug-in Development 43 Debug (& Web
E AgentDetailsUlExtExecutorjava &2 = a8 E
B % 1 backage com.ofss.fc.ui.taskflows.agent.agentdetails.view.ext; a oz
2 o=
3@ import java.util.list;[] ! Bl
16 3
178 /**
18 * <p>
19 Factory Implementation of Extension hook for Managed Bean AgentDetails The default for the extension points. The

*
2@  * methods in this class when invoked, will internally call the pre/post methods present in the classes returned by the
21 * UIExtensionFactery which implement the extension interface.
22 * &fp>
23 =

*

=
=]
L3
R
p . =]

24 fisee AgentDetails

25 %/ )

26 public class AgentDetailsUIExtExecutor implements IAgentDetailsUIExtExecutor { ol

27

28 private static IAgentDetailsUIExtExecutor uniqueInstance = new AgentDetailsUIExtExecutor(); Ej

29 &

3e private List<IAgentDetailsUIExt> extensions = null; %n

31

328 public AgentDetailsUIExtExecutor() { &°

33 super(); #

34 extensions = (List<IAgentDetailsUIExt>) UIExtensionFactory.getUIExtensions(AgentDetails.class.getName());

35 }

38

378 public static IAgentDetailsUIExtExecutor getInstance() {

38 synchronized (AgentDetailsUIExtExecutor.class) {

39 if (uniquelnstance == null) {

48 uniqueInstance = new AgentDetailsUIExtExecutor();

41

42

43 return uniqueInstance;

44 }

45

468 /**

47 * This is the extension point for Managed Bean AgentDetailsAssembler The parameters related to this method are same

a8 * as it is in the public method along with the instance of Managed Bean The javadac for the original method and the

43 * params can be seen from the See Alse link.

58 *

51 * fisee AgentDetailsAssember#OnFetchAgentDetails

52 =g

538 public void assemblerCreateAgentDetailsDTOForFetchAgentDetails(AgentDetailsDTO agentDetailsDTO, ViewObject agentDetailsvo, Vier

54 for (IAgentDetailsUIExt extension : extensions) {

55 extension.assemblerCreateAgentDetailsDTOFerFetchAgentDetails{agentDetailsDTO, agentDetailsV0, agentDetailssvo); il

o A

< n ] b

Writable Smart Insert ail

4.4 Extension Configuration

The extension classes that implement the extension interface are mapped to the taskflow with the help of
seed data in FLX_FW_CONFIG_ALL_B.

Following is a sample implementation.
Single Extension Class

insert into

FLX_FW CONFIG ALL B(CATEGORY ID,PROP ID,PROP VALUE, PROP

COMMENTS, OBJECT VERSION NUMBER,CREATED BY,CREATION DATE,LAST
UPDATED BY,LAST UPDATED DATE,OBJECT STATUS FLAG,FACTORY SHIPPED
FLAG)

values

('UIExtensions', 'com.ofss.fc.ui.taskflows.account.accountholderpre
ferencesetup.view.backing.AccountHolderPreferenceSetup', 'com.ofss.
fc.lz.au.ui.taskflows.account.accountholderpreferencesetup.view.ex
t.RegionalAccountHolderPreferenceSetupUIExt','',1, 'ofssuser', SYSDA
TE, 'ofssuser',SYSDATE, 'A','y");

Multiple Extension Classes

insert into

32 | Oracle Banking Enterprise Originations Ul Extensibility Guide



4.5 Customization Examples

FLX FW CONFIG ALL B(CATEGORY ID,PROP_ID,PROP VALUE, PROP

COMMENTS, OBJECT VERSION NUMBER, CREATED BY,CREATION DATE,LAST
UPDATED BY,LAST UPDATED DATE,OBJECT STATUS FLAG, FACTORY SHIPPED
FLAG)

values

('UIExtensions', 'com.ofss.fc.ui.taskflows.account.accountholderpre
ferencesetup.view.backing.AccountHolderPreferenceSetup', 'com.ofss.
fc.lz.au.ui.taskflows.account.accountholderpreferencesetup.view.ex
t.RegionalAccountHolderPreferenceSetupUIExt',"'',1, 'ofssuser', SYSDA
TE, 'ofssuser', SYSDATE, 'A','y"');

insert into

FLX FW CONFIG ALL B(CATEGORY ID,PROP ID,PROP VALUE, PROP

COMMENTS, OBJECT VERSION NUMBER, CREATED BY,CREATION DATE,LAST
UPDATED BY,LAST UPDATED DATE,OBJECT STATUS FLAG, FACTORY SHIPPED

FLAG)

values

('UIExtensions', 'com.ofss.fc.ui.taskflows.account.accountholderpre
ferencesetup.view.backing.AccountHolderPreferenceSetup', 'com.ofss.

fc.lz.au.ui.taskflows.account.accountholderpreferencesetup.view.ex
t.RegionalAccountHolderPreferenceSetupUIlExtForUseCasel','',1, 'ofss
user',SYSDATE, 'ofssuser', SYSDATE, 'A','y");

insert into

FLX_FW CONFIG ALL B(CATEGORY ID,PROP ID,PROP VALUE, PROP

COMMENTS, OBJECT VERSION NUMBER, CREATED BY,CREATION DATE,LAST
UPDATED BY,LAST UPDATED DATE,OBJECT STATUS FLAG,FACTORY SHIPPED

FLAG)

values

('UIExtensions', 'com.ofss.fc.ui.taskflows.account.accountholderpre
ferencesetup.view.backing.AccountHolderPreferenceSetup', 'com.ofss.

fc.lz.au.ui.taskflows.account.accountholderpreferencesetup.view.ex
t.RegionalAccountHolderPreferenceSetupUIlExtForUseCase2',"'',1, 'ofss
user',SYSDATE, 'ofssuser',SYSDATE, 'A','y');

It is possible to configure multiple implementations of pre or post extensions for a taskflow in this layer. This
is achieved with the help of the extension executor. It has the capability to loop through a set of extension
implementations, which conform to the extension interface supported by the taskflow.

4.5 Customization Examples

Following are some examples of customization.

4.5.1 Replacing skin

Colours are maintained as a variable in the css lib files of the respective modules. Skin can be replaced to
change the colours.

Replace skin: inside preCustomBranding()
@Override

public void preCustomBranding(Main main) {

4 ADF Screen Customizations Using Ul Extensions | 33



4.5 Customization Examples

[*setting skin */

FacesContext fc = FacesContext.getCurrentinstance();

ELContext elc = fc.getELContext();

String skinld = "skyros";

ExpressionFactory exprFact = fc.getApplication().getExpressionFactory();
ValueExpression ve = exprFact.createValueExpression(elc, "#{sessionScope.skinFamily}", Object.class);
ve.setValue(elc, skinld);

[* setting fonts */

main.setFontPath("/css/lato.css");

/* set this flag to false so as to execute pre hook only once when main is loaded */
ELHandler.set("#pageFlowScope.isCustomBranding}","false");

super.preCustomBranding(main);

}

Figure 4-8 Replacing skin

@Override
public void preCustomBranding(Main main} {
f*setting skin */
FacesConterxt fc = FacesContext.getCurrentInstance();
ELContext elc = fc.getELContext();
String skinId = "skyros";
ExpressionFactory exprFact = fc.getiApplication().getExpressionFactory();
ValueExpression ve = exprFact.createValueExpression{elc, "#{sessionScope.skinFamily}!" , Cbject.class);
ve.setValue (elc, =skinId);
f* setting fomts */
main.setFontPath("/css/lato.css");

/% =et this fl ag to false =0 a= to execute pre

ook only once when main is loaded */

ELHandler.set("#{pageFlowScope. 15C.15tom3:and1ng ", "false");

super.preCustomBranding (main) ;

Figure 4-9 Replacing skin

public Main() {
if (voidMainUTExt == null || mainUIExtExecutor == null) {
voidMainUIExt = new VoidMainUIExt();
mainUIExtExecutor = new MainUIExtExecutor();
extension = (IMainUIExtExecutor) UIExtensionFactory.getUIExtensionExscutor{Main.class.getName(});
}
populateTargetUnitS0C();

* set the

alue of flag isCusto ling a al iden in customization %/

if (ELHandler.get(" #{page}?lmwsznpe isCustomBranding}") || Boolean.valneof (ELHandler.get ("#{pageFlowScope.isCustomBranding}”) .toString())) {
custemSranding () ;

}

34 | Oracle Banking Enterprise Originations Ul Extensibility Guide



4.5 Customization Examples

Figure 4-10 Example: Replacing skin

W [OBPR-T4681] Residenti-= X  § [OBPR-73860] T04- PIO4 X

% ( [®] Oracle Banking Platform X ) [@] Oracle Banking Platform X\ SE CollabNet Subversion R= X List of Environments. x e - x
< C | A Not secure | hitps://10.18085.
i1 Apps [} OBPDevOps-Your( {0 Grok {O CrossReference: /FC {0 new_grok [®] local § jirss ¢ CIRA [&] Primavera- Timeshe: [@] 85.202 [&] T11 envior (@) cam [@] Appform [@ Teg Guide

% %- | Xo- | O

4.5.2 Changing the logo in the branding bar

Given the multi-brand nature, the ability is provided to display appropriate brand in OBP. For example,
Westpac, St George, Bank SA & Bank of Melbourne. Logos are given in the jspx/jsff files in the current code
'Oracle’ logo is maintained in ""main.jspx" file. To replace a logo, refer to the following screen shot.

Figure 4-11 Replacing the logo

617

[=HR:] @Override

619 public void postViewBeforePhaseListener (Main main, PhaseEvent phaseEvent) {
620

&2l main.getLogoImage () . setSource ("/images/common/images/risks.png");

622 super.postViewBeforePhaseListener (main, phaseEvent);

623 }

624

625 @0verride

626[E public void postViewPoll(Main main, PollEvent pollEvent) {

4.5.3 Modifying fonts

Font-family is maintained as a variable and inherited the variable in the mixins which are used to style the
various ADF components. Hence if changed the variable's value font will change.

Variable for href to be maintained in backing bean and this variable will be overridden in customization.
Example:
Main.jspx has a placeholder:

href="${pageContext.request.contextPath}${Main.fontPath}"

4 ADF Screen Customizations Using Ul Extensions | 35



4.5 Customization Examples

Main.java holds the path of variable

private String fontPath = "/css/roboto.css";

4.5.4 Modifying images
Images are maintained in the jsff as well as in css files.
Many ADF components provide provisions to give icons for different states of the components.

Example: set the icon and hover icon attribute

Figure 4-12 Example: To modify images

4 Self-Service Login Preferences

View i Detach | @ |3

* Target Unit ColumnMew ColumnMNew

Mo data to display.

4| [T | 3

this.getButtonAdd().setlcon("/images/common/search/search_16_ena.png");
this.getButtonAdd().setHoverlcon("/images/common/search/search_16_ena.png");

Also wherever component's image can be replaced using css by applying it to the particular selector if
component exposes the selector. Same as graphics.

4.5.5 Graphics

Graphics include buttons, warnings, and so on.
Button styles are maintained in the respective css files. (Handled through Section 4.5.1 Replacing skin)

Warning text is maintained in the resource bundle (". properties") files: Replace the properties file in
config/resources/taskflows/module

SamplePath : config/resources/taskflows/BankPolicyDefinition_en.properties

4.5.6 Adding a simple field to a product screen

Example: Adding input text to a panel form layout
/* create component and set relevant properties */
RichlnputText ui = new RichlnputText();
ui.setld("rit1");

ui.setLabel("Input text");

ui.setValue("Hello");

ui.setContentStyle("font-weight:bold;color:red");

/*add the newly created component to existing form */

36 | Oracle Banking Enterprise Originations Ul Extensibility Guide



4.5 Customization Examples

this.getPfl1().getChildren().add(ui);

Figure 4-13 Example: To add a simple field to a product screen

4 Bank Parameters New

* Bank Code Q Inputtext  Hello

Bank Name ] Button

Bank Group Code Q Bank Short Name

4.5.7 Adding a complex field popup to a product screen (popup, table,
tree, region, tf)
/*Handle via making mds changes*/

4.5.8 Removing an existing field from a product screen
Example: Hiding an LOV from panel form layout

this.getBankCodeLOV().setVisible(false);

Figure 4-14 Example: To remove an existing field from a region

4 Bank Parameters New

* Bank Code Inputiext  Hello

Bank Name 2 Button

Bank Group Code Q Bank Short Name

4.5.9 Making certain product optional product fields mandatory or
optional
Example: Setting bank name to required

this.getBankName().setRequired(true);

4.5.10 Adding a new column to an existing product grid
Example: Adding a new column to a table in CS26

/* create new column component */

RichColumn ui1 = new RichColumn();
uil.setHeaderText("ColumnNew");
ui1.setld("col3");
ui1.setAlign("center");

ui1.setRowHeader("unstyled");

/* get the table from bindings where column needs to be added */

4 ADF Screen Customizations Using Ul Extensions | 37



4.5 Customization Examples

getT1().getChildren().add(ui1);
AdfFacesContext.getCurrentinstance().addPartial Target(getT1());

/* set the value in column 3 as required on any event */

RichlnputText ui11 = new RichlnputText();

ui11.setld("rit1");

ui11.setLabel("Input text");

ui11.setValue("Hello");
ui11.setContentStyle("font-weight:bold;color:red");
ui11.setReadOnly(false);

getT1().getChildren().get(3).getld();

getT1().getRowlIndex();
getT1().getChildren().get(3).getChildren().add(ui11);
AdfFacesContext.getCurrentinstance().addPartial Target(getT1());

Figure 4-15 Example: To add a new column to an existing prouct grid

4 Self-Service Login Preferences

View v | Detach Q3

. . * Self Service
Target Unit Login Strategy ColumniMew

Q E| Hello

4 [l | ¢

4.5.11 Hiding columns from an existing product grid
Example: Hiding an existing column from a table in CS26

/* get the corresponding column and set its rendered property to false */

this.getT1().getChildren().get(1).setRendered(false);

38 | Oracle Banking Enterprise Originations Ul Extensibility Guide



4.5 Customization Examples

Figure 4-16 Example: To hide columns from an existing product grid
4 Self-Service Login Preferences

View v g Detach Q¥
* Target Unit Columniew

Q Hello

4.5.12 Graying out certain columns from an existing product grid
/* disabling the component that was set inside the column */

this. ui11.setDisabled(true);

4.5.13 Modifying properties of product table (rows or tablesummary)
this.getT1().setEmpty Text("New Text");

in case where properties are picked up via RB the file itself can be replaced in customization

Figure 4-17 Example: To modify the properties of product table

4 Sself-Service Login Preferences

View i Detach Q@ 3

* Target Unit * Self Senvice ColumniMew

Login Strategy

4| n §

4.5.14 Adding a new section to an existing product screen
/* create a new panel form layout */

RichPanelFormLayout pfl111 = new RichPanelFormLayout();
pfl111.setld("pfl111");

pfl111.setMaxColumns(2);

pfl111.setRows(1);

pfl111.setFieldWidth("60%");

pfl111.setLabelWidth("40%");

getPb1().getChildren().add(pfl111);
AdfFacesContext.getCurrentinstance().addPartial Target(getPb1());

4 ADF Screen Customizations Using Ul Extensions | 39



4.5 Customization Examples

/* create components to be added to that section */

RichlnputText ui = new RichlnputText();

ui.setld("rit1");

ui.setLabel("Input text");

ui.setValue("Hello");
ui.setContentStyle("font-weight:bold;color:red");
getPfl1().getChildren().add(ui);
AdfFacesContext.getCurrentinstance().addPartial Target(getPfl1());
RichCommandButton ui2 = new RichCommandButton();
ui2.setld("ch1");

ui2.setText("Button™);

ui2.setInlineStyle("font-weight:bold;");
ui2.setlcon("/images/common/search/search_16_ena.png");

ui2.setlcon("/images/common/print/printreciept_16_ena.png");

/*add new components to the new section */

getPb1().getChildren().get(2).getChildren().add(ui2);
getPb1().getChildren().get(2).getChildren().add(ui);

Figure 4-18 Example: To add a new section to an existing product screen

4 Bank Parameters New

* Bank Code Bank Name

Bank Group Code Q Bank Snort Name

&) Button Inputiext  Hello

4 Address Details

4.5.15 Hiding a section from a product screen
/* Hiding all components inside the panel form layout */

this.getPfl1().setVisible(false);

4.5.16 Adding a new tab to an existing product screen made of tabs
/* create a new tab and add its relevant properties */

40 | Oracle Banking Enterprise Originations Ul Extensibility Guide



4.5 Customization Examples

RichCommandNavigationltem ui2 = new RichCommandNavigationltem();
ui2.setld("newTab");
ui2.setSelected(false);

ui2.setText("newTab");

/* add it to the navigation pane */

this.getNp1().getChildren().add(ui2);

Figure 4-19 Example: To add a new tab to existing product screen made of tabs

£ Backto Summary

Facilities (3 u [ ]

m Renew = Exceptions | newTab

* Overdue v
Mo items to display

123 > Show 10 [+

4.5.17 Hiding a tab from a product screen made of multiple tabs
this.getNp1().getChildren().get(1).setRendered(false);

Figure 4-20 Example: To hide a tab from a product screen made of multiple tabs

£ Backto Summary

Faciliti G u [ ]
%xceptons newTab

*  Overdue A4

No items to displey

123 > Show 10 (v

4.5.18 Adding new buttons or links

This approach will not work for "Approvals" and "Ul level security"
/* Create a new command button and set its relevant properties*/
RichCommandButton ui2 = new RichCommandButton();
ui2.setld("ch1");

ui2.setText("Button");

ui2.setlnlineStyle("font-weight:bold;");

ui2.setlcon("/images/common/search/search_16_ena.png");

4 ADF Screen Customizations Using Ul Extensions | 41



4.5 Customization Examples

/* add it to the relevant panel component */
this.getPfl1().getChildren().add(ui2);
AdfFacesContext.getCurrentinstance().addPartial Target(getPfl1());

Figure 4-21 Example: To add new buttons or links

4 Bank Parameters New

* Bank Code Inputtext | Hello
Bank Name 5] Button
Bank Group Code Q Bank Short Name

4.5.19 Overriding / Customizing the product behaviour on certain actions

like button clicks or tab-outs
/* need to create a new link programmatically and link the action listener method to it */

4.5.20 Overriding the product validation pattern
this.getPolicyName().setPattern("[a-zA-Z]™");

Figure 4-22 Example: To override the product validation pattern

F-Jan-2016 € Error: The format is incorrect.
r— Enter a value that matches this pattern: [a-zA-ZI"
fir  Cs26 x
Enter as per below pattern:
3ank Policy Any Character In a-zA-Z - PrintClientid 5 Print  / Ok 4 Clear { Cance

Zero or More Times

Enter between 1 and 10 characters
4 Bank Policy Definition

Policy Name
* Policy Code * Policy Name
* Policy Description
*BankCode 10 Bank Name  Emerald Bank Global

4.5.21 Overriding the product lengths (min/max)
this.getPolicyName().setMaxLength("10");

4.5.22 Disable / Enable certain product fields
this.getBankName().setDisabled(true);

4.5.23 Change certain product fields to read-only either on load or based
on certain conditions
this.getBankName().setReadOnly(true);

4.5.24 Change label of existing product fields
this.getBankName().setValue("BankName");

42 | Oracle Banking Enterprise Originations Ul Extensibility Guide



4.5 Customization Examples

4.5.25 DC validation

The text for error message comes from "CommonValidationMessages_en.properties” and this file can be
replaced in customization. However the values for Min and Max length inside the message can be overridden.

4.5.26 LOV Extension— LOV Delegate Pattern

m Consulting use case:

« Display the list of accounts of the logged in user from a third party system.
= Implementation:

o Re-use “LOVDelegate” framework

« Override the existing implementation in HostQueries.xml with a <service> tag while the existing
product implementation is present conditionally.

« <Service> tagin-turns points to a new LOVDelegate class which implements the ILOVDelegate
interface.

« The entire custom implementation to fetch external records will be present in the LOVDelegate
class.

« Conditionally invoke the consulting implementation or product implementation based on the
requirements.

m Key Benefits:

« Easy to plug-in with minimal changes. Host layer only impacted with no impact to the
presentation layer.

« Query can be overridden in a very sophisticated way with the use of <Service> tag.
o Plug-in-play and can be easily turn off if required.

= Visual representation is given below:

Figure 4-23 LOV Extension- LOV Delegate Pattern

Service Tag will always be the
single point entry. The decision
to execute the query or the
web service will be within the
Delegate class based on the BU

/ Query
| Implementation
// I UBank » [CZ Record G
Id]
» . o | <Service> tag-
ul #  HostQueries.xml > LovDel -
Bank User launches the LOV by RR P Service Call
clicking on the magnifying icon

4 ADF Screen Customizations Using Ul Extensions | 43



4.6 Using the JSFF Utils

Figure 4-24 Sample Code Snippet

foaciage com.afen. £o, 03 NAD, APE. SEMTAT. LERL. PATTY . ACOOURE -

Jpebliz class PartydodulsloVielsgets isplmsmbs ILOVDlsgwts |

nal Strisg THIS_ COMPONINT KEME = FaztyModulsLOVDelegats.cless.getSasei):

rranslent Dogger logoer = MulsiEacicylegger gettnlquelesraace ()  peologyer (THI_COHPOHENT HNG)

* GaE-RERA- L5 framewnric. sdapTes . 1oy I1OVTe Legure 4 et RRco T (oR. GAAN - S5 AR SonTeRT. Sepalonlontant, JMIN-ANR-FT0IS9, JAVN- LAGE. STTING. JNER-RRAL- BT, AN
v
Bover=ise
public LOWVRssponss fecciRecards (Ssawicolcootsss sessicalooscex:, Soring quoasyld, Scring taaklods, Map<fering, Stringd birdParams, i=zc hashoods)
) throws FatalExceprion |

LORapcnss lovRarponse = naw LOVResponss [ ©
malcibrandingBelperipplicaciondervice mlcibrardingielperhipplicacisndervice = mew MolviBrandungBeliperkpplicationdervuoe (i !
i = sulriBrandinghielperippdicatisalervice. Serivelrasafrontess i 2t [seasioatoatent] :

+ maisiBrandisgieaponss ITD, qerhrardflaceRaldeT ib1

Sring partyld =
8 [Logger. islogyubis(Level FINLI}

Legger. Leg(Level  FINE, THIS_OSMPOHENT_HNE = = plsafarasa)
i (bindfarems V= mell b6 bisdFerems.ges | par b #= mall} |

Af (HareetintityEsom. ME_TRAE  equals malriSsandy nyhesponselTl. peeBrasablaceSolaer (i )] |

Cxscote BostQoacies [CZ_SHTE_QRY_DOGC) to populste [Ragk
LY Af jloper islogparle (level . FIFEI) | ™

4.6 Using the JSFF Utils

4.6.1 How to Use JSFF Utils

Following is the example to use JSFFUTtils:

JSFUtils.insertPanelHeader
("rphRomanianDetails","Details",parentId,uiComponent) ;
JSFUtils.insertRichPanelFormLayoutEnd
("rpfRomanianl","60%","40%",2,1, "rphRomanianDetails",uiComponent) ;

Figure 4-25 Example of JSFF Utils

Other identification Details

*Type  Romanian ID n ‘i Fetch

Details

Name Test Romanian Number 2220

4.6.2 Sample JSFF Utils Code Snippet
/**
*This method adds af:PanelFormLayout ADF component at the end of
the given parent.
* (@param id sets id attribute on the af:PanelFormLayout.Type
String.
* (@param fieldWidth sets fieldWidth attribute on the
af:PanelFormLayout.Type String.
* (@param labelWidth sets labelWidth attribute on the
af:PanelFormLayout.Type String.

44 | Oracle Banking Enterprise Originations Ul Extensibility Guide



4.6 Using the JSFF Utils

* @param maxColumns sets maxColumns attribute on the
af:PanelFormLayout.Type integer.

* (@param row sets row attribute on the af:PanelFormLayout.Type
integer.

* (@param parentId is the id of the immediate parent component where
af:PanelFormLayout need to be appended.Type String

* (@param superParent is the component where parentId is placed.Type
UIComponent

*/

public static void insertRichPanelFormLayoutEnd (String id, String
fieldWidth, String labelWidth, int maxColumns,int row, String
parentId, UIComponent superParent) {

UIComponent uiComponentPGL = superParent.findComponent (parentId) ;
RichPanelFormLayout richPanelFormLayout = new RichPanelFormLayout
() ;

richPanelFormLayout.setId (id) ;
richPanelFormLayout.setFieldWidth (fieldwidth) ;
richPanelFormLayout.setLabelWidth (labelWidth) ;
richPanelFormLayout.setMaxColumns (maxColumns) ;
richPanelFormLayout.setRows (row) ;
uiComponentPGL.getChildren () .add (richPanelFormLayout) ;

}

*This method adds af:panelHeader ADF component at the end of the
given parent.

* (@param id sets id attribute on the af:panelHeader.Type String.

* (@param text sets text attribute on the af:panelHeader.Type
String.

* (@param parentId is the id of the immediate parent component where
af:panelHeader need to be appended.Type String

* (@param superParent is the component where parentId is placed.Type
UIComponent

*/

public static void insertPanelHeader (String id,String text,String
parentId,UIComponent superParent) {

UIComponent uiComponentParent = superParent.findComponent
(parentId);

RichPanelHeader richPanelHeader = new RichPanelHeader();
richPanelHeader.setId (id) ;

richPanelHeader.setText (text) ;
uiComponentParent.getChildren () .add (richPanelHeader) ;

}

4 ADF Screen Customizations Using Ul Extensions | 45



46 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5 ADF Screen Customizations Using MDS

OBP provides the extensibility to an application for customizing certain additional requirements of a client.
However, since these additional requirements differ from client to client, and the base application functionality
remains the same, the code to handle the additional requirements should be kept separate from the code of
the base application. For this purpose, Seeded Customizations (built on the Oracle Metadata Services
framework) can be used to customize an application.

Note

It is recommended to use ADF screen extensions for Ul changes
instead of mds where ever possible as it is easier to upgrade to new
version of product.

5.1 Seeded Customization Concepts

When designing seeded customizations for an application, one or more customization layers need to be
specified. A customization layer is used to hold a set of customizations. A customization layer supports one
or more customization layer value which specifies which set of customizations to apply at runtime.

Custom Application View can be represented as follows:

Figure 5-1 Customization Application View

Base adfc-config.xml

Base JSFF Base Backing bean
Customized XML EL Expression Inheritance
Custom JSFF Custom Backing bean

Custom adfc-config.xml

Reference

PO

Oracle JDeveloper 11g includes a special role for designing customizations for each customization layer and
layer value called the Customization Developer Role.

The following section explains the details about the Oracle JDeveloper customization mode as well as
customizing and extending of the ADF application artifact. The detailed documentation for customizing and
extending ADF Application Artifacts is also available at the Oracle website:

http://docs.oracle.com/cd/E25178 01/fusionapps.1111/e16691/ext_busobjedit.htm

5 ADF Screen Customizations Using MDS | 47


http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e16691/ext_busobjedit.htm

5.2 Customization Layer

5.2 Customization Layer

To customize an application, you must specify the customization layers and their values in the
CustomizationLayerValues.xml file, so that they are recognized by JDeveloper.

For example, you can create a customization layer with the name option and values demo and another bank
name.

To create the customization layer, follow these steps:

1. From the main menu, choose the File > Open option. Locate and open the file
CustomizationLayerValues.xml which is found in the <JDEVELOPER_HOME>/jdeveloper/jdev
directory. In the XML editor, add the entry for a new customization layer and values as shown in the
following image.

Figure 5-2 CustomizationLayerValues.xml

| config.xml.xml * |@Demo€ontactPoint.java x |@OptionCC.java x [CustomizationLayer\falues.xml x I@contactPoint.jsf‘f x ||§E E]E]E]

I =,
(@0- 24) =
D YeTie T LU,
85| --=
| 95
¢| 97| =cust-layers xmlns="http://xmlns.oracle. com/mds/dt"=
¢| 98| <=cust-layer name="site" id-prefix="s"=
- <!-- Generated id-prefix would be "s1" and "s2" for values
1| leg "gitel" and "site2".--=
181 =cust-layer-value value="sitel" display-name="Site One" id-prefixz="1" /=
102 =cust-layer-value value="site2" display-name="Site Two" i1d-prefix="2" /=
103 <l-- Generated id-prefix would be "s" for wvalue "site"
104 since no prefix was specified on the value --=
185 =!-- ADF SiteCC always returns the value as "site" --=
106 =cust-layer-value value="site" display-name="Site"/=
lg </cust-layer=
1.
1Cp| =cust-layer name="option" prefix="o"=
11 =cust-layer-value value="demo" display-name="demo" id-prefix="ol"/=
11 =cust-layer-value value="Ubank" display-name="Ubank" id-prefix="oZ'/>
11f| =/cust-layer=
11
114 =!-- Customization layers that are only meant for runtime usage can
115 be excluded in design time by defining size as "no_walues"--=
115 =cust-layer name="runtime_only_layer" value-set-size="no_values"
117
& 1s =cust-layer name="user" value-set-size="large"=
119 <!-- Generated id-prefix would be "usl" and "us2" for values "userl”
120 and "user2" since no prefix was defined per-name level --=
121 <cust -layer-value value="userl" display-name="First User" id-prefix="usl" /=
122 =cust -layer-value value="user2" display-name="Second User" id-prefix="us2" /=
123 <!-- Generated id-prefix would be "useradmin” and "userguest" for
124 walues "admin" and "guest" since no prefix was defined at both
125 layer level and name level --=
126 =cust-layer-value value="admin" display-name="Administrataor" =
127 =cust -layer-value value="guest"/>
128 =/cust=layer=
128| =/cust-layers=
130 |
Source

2. Save and close thefile.

5.3 Customization Class

Before customizing an application, a customization class needs to be created. This class represents the
interface that the Oracle Metadata Services framework uses to identify the customization layer that should be
applied to the application's base metadata.

To create a customization class, follow these steps:

48 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.3 Customization Class

From the main menu, choose File -> New.

Create a generic project and give a name (com.ofss.fc.demo.ui. OptionCC) to the project.
Go to Project Properties for this project and add the required MDS libraries in the classpath of the
project.

Figure 5-3 Customization Class

File Edit wview Application Refagtor Search pNavigate Build Bun  Versigning Teols Window Help

FoEg 90 XER Q-0 & &BH%- b-%- 4 -
il @laghzation Mavigator = Project Properties - fhomefrshanbha/Work jdev_workspace/View/com.ofss. Fedemo.ul )
E A view =g - -1
Libraries and Classpath
&~ Projects a7 5 L B
CY ™ ol com.ofss fo.demo.ui core (1018022 59 - Project Source Paths Use Custom Seftings
® G com.efes fe demo ui model party (10,180,225 |# ADF Model ¥ Use Project Settings
-yl com.ofss fc.demo.ul OptionCC [10.180.22.5%) ADF Vigw
&=a ; Fance | . ot v SE Varsion
= = -:ﬂ com.ofss.fc demo, i viem party [L0.150.22 55| @ A - ;
8 | 55l com.ofss fo uiview (10,180 22 58 @ Buwiingss Companents L.5-0_23 (Dl Chagge |
o = T
E = ﬁ_] .-,:.n:h(t:mn Sources & ;cmm!‘er Classpach Entries
= wieb Cantent ependencies
: e -e onten Esport  Descriphion Add Ligrary.
= @ pd temn Deploymnent - - [P
£ w | Epl Ha-dul e i JAR D
;_ #pd caz i Bl HO5 Runtime Dependencies & Lt
B & bl imnages Estensisn
B # pd upload Jarado
& pa WikHelp Jarra EE Application
3 pd WEB-MF J5P Tag Lbraries
& pd Page Fowd ISP visisl Editor
g¥ aboutls jsff 215810 Libraries and Clazspath
ﬂ-‘ Dol jaff 215061 Resgurce Bundle
ﬂ error.html 215061 Funifrebug/Profile
ﬂ begin baml 337634 Technalagy Scepe
5'1 main jspx 2ZB678 h
= G com. ofus fo.ui view. party [10.150.22.55]
#pd Application Sources
& Wb Content
B jgd) com.ofss fo.demo.ul GptionCC
= -pd Aoplication Sourtes
=g com.ofss fc
2 g dema
= gl ui
= all Gotienll
4 OptionCC java
Help O Cancel
=
Source | Design | History | £ *N

4. Create the customization class in this project. The customization class must extend the

oracle.mds.cust.CustomizationClass abstract class.

Following are the abstract methods of the CustomizationClass:

m getCacheHint() - This method will return the information about whether the customization layer
is applicable to all users, a set of users, a specific HTTP request or a single user.

m getName() - This method will return the name of the customization layer.

m getValue() - This method will return the customization layer value at runtime.

The screenshot below depicts an implementation for the methods:

5 ADF Screen Customizations Using MDS | 49



5.4 Enabling Application for Seeded Customization

Figure 5—-4 Implementation for the abstract methods of CustomizationClass

-config.xmlxml X ||§|Dem0C0ntactPoint.java x ||§]Optioncc.java x [Eﬂptioncc.java x |?contactF‘oint.jsf‘f x |@[@E]E]

- =
(@8- SRS A BUREE AR RE B =
1| 'package com.ofss. fc.demo.ul. Optionie;
2
3| Eimport oracle.mds. core.Metadatalbject:
4| import oracle.mds.core.RestrictedSessiaon;
5| import oracle.mds.cust.CacheHint;
6| import oracle.mds. cust.CustomizationClass;
7
8| B public class OptionCC extends CustomizationClass {
2]
10 private static final String LAYER NAWE = “option”;
11 private static final String DEFAMLT PAYER = "demo”;
12
13 = public OptioncCCl) {
14 super (] ;
13
lg
17 & public CacheHint getCacheHint(} {
18 return CacheHint.REQUEST,;
18 H
20
21 = public String getMame (] {
22 return LAYER NAME;
23 H
24
25 public String[] getwalue{RestrictedSession restrictedSession,
25| = Metadatalbject metadatalbject) {
27 Stringl] layerValues = null;
28
29 try { h
30 //bdd Code to fetch layer values from property resources
3l I catch(Exception e} {
3z lavervalues = new String[]|{DEFAULT FAYERT:
23 1
24
35 return layerivalues;
28 H
P
32
Source | Design | History

5. Build this class and deploy the project as a JAR file (com.ofss.fc.demo.ui.OptionCC.jar). This JAR file

should only contain the customization class.

6. Place this JAR file in the location <JDEVELOPER_HOME>/jdeveloper/jdev/lib/patches so that the

customization class is available in the classpath of JDeveloper.

5.4 Enabling Application for Seeded Customization

Seeded customization of an application is the process of taking a generalized application and making

modifications to suit the needs of a particular group. The generalized application first needs to be enabled for

seeded customization before any customizations can be done on the application.

To enable seeded customization for the application, follow these steps:
1. Gotothe Project Properties of the application's project.

2. Inthe ADF Views section, check the Enable Seeded Customizations option.

50 | Oracle Banking Enterprise Originations Ul Extensibility Guide




5.4 Enabling Application for Seeded Customization

Figure 5-5 Enable Seeded Customizations

il {2 Application Navigator *

EV\EW

~ Projects
@ cam.ofss fo.demo.ui.core [10.180.22.95]
@ com.ofss fo.demo ui.model. party [10.150.22.95]
@ com.ofss fo.demo. ui.OptionCC [10.180.22.95]
@ com.ofss fo.demo. uiview. party [10.180.22 95]
—--@ com.ofss fo.uiview [10.180.22.95]
+ J;] Application Sources
&) Web Content
50 com
-pd ess
b images
-5 upload
-5 WebHelp
- WEB-INF
-5 Page Flows
g8 AboutUs jsff 215810
- Default.jsff 215061
-8 error.html 215061
3| login html 227634
main.jspx 228678
E--4al com.ofss fo uiview. party [10.180.22.55]
#1-5] Application Sources

[T A ——

= Application Resources

N3N

dojebiaen EU!UD!SJaAﬂG

-7 Connections

=) Descriptors

5 META-NF

£ ADF META-INF

i !E| adf-config.xml 215061
L] connections.xml 215061

-

Project Source Paths
ADF Model

Ant

Business Components
Compiler
Dependencies
Deployment

EJE Madule

- Extension

- Javadoc

- Java EE Application

- |]SP Tag Libraries

- ]SP Visual Editor

~ Libraries and Classpath
- Resource Bundle

- Run/Debug/Profile

-~ Technology Scope

ADF View

() Use Custom Settings
(3) Use Project Settings

datacontrols

[JInclude |SF HTML Widgets

WEB-INFfweb xm| is required

Enable User Customizations

O Eor Duration of Session

() Across Sessions using MDS
Enable Seeded Customizations

Configure defaﬁskm family for this project

When ADF Faces is present, ]SF HTML widgets will not show when dropping

Configure customization options for ADF Faces. Note that write access to

Default Skin Family: [#{sessmnSwpa.skjnFamin}

d

][ e ]

Owerview | Source | Histary D

3. Inthe Libraries and Classpath section, add the previously deployed com.ofss.fc.demo.ui.OptionCC.jar
which contains the customization class.

5 ADF Screen Customizations Using MDS | 51



5.4 Enabling Application for Seeded Customization

Figure 5—-6 Adding com.ofss.fc.demo.ui.OptionCC.jar

Appllcatlon Mavigator X

i
% @ Wiew
E = 5
5| = Projects 2@ |\“ | Libraries and Classpath
a -3l com.ofss.fc.demo.ui.core [10.180.22.95] - Project Source Paths () Use Custom Settings
@ com.ofss fc.demo.ui.model.party [10.180.22.95] -~ ADF Model () Use Project Settings
g @ com.ofss.fc. demo. ui. OptionCC [10.180.22.85] - ADF View
prd ~bedl com.ofss.fo.demo.uiview. party [10.180.22,95] - Ant [ 2E VerlenE
al= ~hal com.ofss. fe.uiview [10.150,22.95] - Business Components [1.6.0_23 (Default] ] [ Change ]
5 g Application Sources -
g = % Wm:) c Campiler . Classpath Entries:
E N eb Content Dependencies Export D - Add Libral
= -57) com Deployment Xpo escrip mnd . . brary...
E -5 css EJE Module i AGF Mo = Runtime Add JAR/Directory..
= 3 images Extension ol BC4J Runtime
g @l Oracle JDEC
= 7 upload Javadoc
bHel - '. Connection Manager
-7 WebHelp Java EE Application §ll BC4) Oracle Domains
o WEB-INF ISP Tag Libraries @il ADF Management Pages
53 Page Fluv.ds - JSP Visual Editor ] Oracle ADF DataTag
&8 AboutUs jsff 215810 - [reres ok il B4y HTML
&F Default jsff 215061 - Resource Bundle il Bc4) Struts Runtime
@] error.ntml 215061 - Run/Debug/Profile @l Commaons Digester 1.8
8| login htm! 227634 -~ Technology Scope @il Struts Runtime
57| main.jspx 228678

'. ADF DVT Faces Databinding MDS Runti... h
B-lgal com.ofss. fe uiview party [10.180.22.55]

E:I Application Sources
M PRsiak fandbant
~ Mpplication Resources
@3 connections
=-3 pescriptors
57 META-NF
B~ ADF META-INF
i lp] adf-config.xml 215061
: E connections xml 215061

& Co;n.ofss.fc.demo ui.OptionCC.jar

YEH

il cusToM_LIE
'. com. ofss ui.customtags. jar

il PROXY_LIB
gl TASKFLOW _LIB
#ll TASKFLOWCASA_LIE

gl TEMPLATE_LIE
Al VIEL COMMAN LR .4

o] [ ewel ]

| e
Owverview | Source | History <| > l

4. Inthe Application Resources tab, open the adf-config.xml present in the Descriptors/ADF META-INF
folder. In the list of Customization Classes, remove all the entries and add the
com.ofss.fc.demo.ui.OptionCC.OptionCC class to this list.

Figure 5-7 Adding com.ofss.fc.demo.ui.OptionCC.OptionCC

| Happlication Mavigator * ) |BlDemaeContactpaint java x | B optisncc java x |l optisncC.java x [ adf-canfigoaml x | eontacpointjsff x | & [OEIE
| 23 view . =
! P%”f:: ros fe dem Business Companents
+ x o hat additional config n the ce
3 - MDS Configuration D o addiianal configu soures
& Contraller FY
® View
= -
Custemization Classes
com. ofss. fo. demo. ui. OptianCC. OptionCC
|'
#
.
- 4
& ) WEB-INF
®- 5l Page Flows
@ AboutUs joff 215810
@ Defaul jaff 051
= 0.180.22 551
- |l Ao s P
Application Resources
& {1 Connections h'
39 adf-configroml 215061
Overview | Saurce | Histary | < >1 ]

52 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.5 Customization Project

Figure 5-8 Adf-config.xml

|55 SearchByCurrentLoc ationlist  jsps | | &) geolocationFinder. 5 | |5 GeolocationServiet. java o adf-config.sml | EE=ywieh. ol | |Z]FeCore. j5

L))

DoD@m

(o

=

TG CL e
<attribute name="vizible™:
<persist -changes> trued jpersist -changes:
< fattributes
Zattribute name="widch™>
<persist -chamges> true< /persist -changes>
< fattributel
< ftag>
</taglib>
< /taglib-config>
< /adf-faces-config:>
<mdsC:adf-mds-config xnlns:mds="http: //xalns.ocacle. consmds /config™
PR ¥mlns:mdsC="hitp: //xmines.oracle. con/adf/mds/config’>
[ <meds -config xmlns="http: //fxnlns.oracle. con/mds/config™ wversiom="11.1.1.000"> J
s persistence -configs
< uis:metadata-store-usages-
<mils :metadata-store-usage default-cust-store="trues™
deploy-cargec="true” id="MAR TargetRepas™>
<mie :metadata-store class-name="oracle.mds.persistence.stores.db.DBMetadataStore”>
<mids:property value="mds-dev”™ name="repository-name™ />
Tuis:property value="0racleFLEXCUBE” name="partition-name™/ >
<mds:property value="jdbc/mds/MDSD5" name="jndi-datasource™ />
</mils cmetadata-store>
< /mis metadata-store-usage:-
< /muls :metadat a-store ~usages>
= /s i persistence —config:
~cust -config>
<match path="/">
Zocustomization-class nape="com.ofss.fc.cz.nab.0ptionCC™ />
< smatchs
< .’cust.—l:oniill’?l
[ </mis-contige
< /=] : ad f -mds ~-config>
cadf-desktopintegration-servlet-—config xlln=='11nhp: Sifxmlns. oracle. con/adE /desktopintegracion/secvl Et/"_"i

5.5 Customization Project

After creating the Customization Layer and the Customization Class and enabling the application for Seeded
Customizations, the next step is to create a project which will hold the customizations for the application.

To create the customization project, follow these steps:

1. From the main menu, choose File -=> New. Create a new Web Project with the following technologies:

m ADF Business Components

m Java
s JSF
m JSP and Servlets

2. Gotothe Project Properties of the project and in the classpath of the project, add the following jars:

Customization class JAR (com.ofss.fc.demo.ui.OptionCC jar)

The project JAR which contains the screen / component to be customized. For example, if you
want to customize the Party -> Contact Information -> Contact Point screen, the related project
JAR is com.ofss.fc.ui.view.party.jar.

All the dependent JARS / libraries for the project JAR.

Enable this project for Seeded Customizations.

5 ADF Screen Customizations Using MDS | 53



5.6 Customization Role and Context

5.6 Customization Role and Context

Oracle JDeveloper 11g includes a specific role called Customization Developer Role that is used for editing
seeded customizations.

To edit customizations to an application, you will need to switch JDeveloper to that role, follow these steps:

1. InTools > Preferences > Roles, select the Customization Developer Role.

Figure 5-9 Customization Developer

@ Preferences

[ @8 )| Roles
Role:
[# - Diagrams 1 il
-~ Extensions ) Default Role
External Editor Enables all technologies
File T: -
e Types (#) Custpmization Developer
Global Ignore List .
Hittp Analyzer Configures the product for customizing metadata.

&

]

JavaScript Editor

Java Visual Editor

JSP and HTML Visual Ec
Mouseover Popups

Run

Shortcut Keys
Tasks

TopLink

UML

Usage Reporting
Versioning

Web Browser and Prox:
W5l Testing Tools
WS Policy Store
XML Schemas

Help

) Database Edition

Includes onby features for core database development

() Java EE Edition

Includes onby features for core |ava EE development

) Java Edition

Includes onky features for core java development

[v] Always prompt for role selection on startup

Cancel

2. Select the "Always prompt for role selection on start up" option.

54 | Oracle Banking Enterprise Originations Ul Extensibility Guide




5.6 Customization Role and Context

Figure 5-10 Selecting Always Prompt for Role Selection on Start Up

™ select Role

Select the role that matches vour requirements. You can also
change roles using the Roles page in preferences,

Bole:

) Default Role

Enables all technologies

%)

) Customization Developer
Configures the product for customizing metadata.
) Database Edition
Includes only features for core database development
() Jawa EE Edition
Includes onhy features for core Java EE development.

() Java Edition

Includes onhy features for core Java development

[+] Always prompt for role selection on startup

[ OK ‘ l Cancel l .

On restarting JDeveloper, you will be prompted for role selection. Select Customization Developer
Role.

Once Oracle JDeveloper 11g has restarted, ensure that the application to be customized is selected in
the Application Navigator and have a look around the integrated development environment. You will
notice a few changes from the Default Role. The first change you might notice is that files (such as
Java classes), that are not customizable, are now read only. The Customization Developer Role can
only be used for editing seeded customizations. Anything that is not related to seeded customizations
will be disabled. The second major difference you might notice is the MDS - Customization Context
window that is displayed.

Check the Edit with following Customization Context option. You will see a list of customization layer
name and customization layer values which were defined in the CustomizationLayerValues.xml file.

Select the Customization Context for which, the customizations you edit should be applicable.

5 ADF Screen Customizations Using MDS | 55



5.7 Customization Layer Use Cases

Figure 5-11 View Customization Context

. s
View - Customization Context * &

) View without Customizations
I'+) Edit with following Customization Context

Tip layer Name Value
: dema (demol
Iy Ubank (Ubank)

Customization Context - option/demo
rri lgbal laver val

All the customizations which are done to the application are now stored for the selected Customization
Context.

5.7 Customization Layer Use Cases

5.7.1 Adding a Ul Table Component to the Screen

This second example of customization, explains adding a table Ul Component, which displays datato a
screen.

Use Case Description: The Advanced Search screen is used to display the related accounts and their
details for a party. The Party -> On-Boarding -> Related Party screen displays the related parties for a party.
This section explains adding the table Ul component used for displaying the related parties on the Related
Party screen to the Advanced Search screen and populate data in this table on search and selection of a
party.

56 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-12 Adding a Ul Table Component - Party Search screen

mges EBBn
Party [D | poODOSIRG Full Hama -
First mame Last Name
Shart Name Emall 1D
Search | Resst |
= Party Search Results | clear
Views [ Detach b
| Date of Birth or |
Party 1D Hame L‘I"ml lmr of Rgles It ’ Ilvlmrclﬂl Emad 1D
000005230 Daniel Joknsen | Endivid 2 05D 1560 Others dipia, patnai Gorache com
“
= Account Details = Acoount Specific Detalle
Serial Mumber Wumbser | Acoounk Aocount Number 000000000000 7510 Account Tile Daniel Corp
Account Dpering  15-)an-2006 Apgount Currency  AUD
Date
Party 1D DDOOOS29T Party Mame Daniel Corp
Offer LOFOOS MAB TAILORED HOME Branch Q82991 U Bank Operations BR
LOAN - LOFOOS
Facilty Code  FC20160150018764 Faciity Mame  Home Loan F
Total Disbursed  §200,000.00 Last Disbursement J1-Mn-2006
Amount Dace
Date Of Maharity 15-Ran-2007 Accrual Status Mormal
Approved Amount  $200,000.00 Feat |ritalimant 40000 [
Armount )

Figure 5-13 Adding a Ul Table Component - Related Party screen

Related Party
(] Bead | offs Crante o Updaze o Ok g Clear [H Exit (2) Prm

= Primary Party Information

= Party Details
* Party 10 000005196 Date of Birtn  O5-Dec-1960
HO Full Narme  Danibsl Jorfisan GEMIEr  Undisciosed NO
Home Branch 08FF91-U Bank Operations BR Roles & Cyugiamer

IMAGE arty Cisss Others  Birecine IMAGE

AVAILABLE Farty Type TN Onboardng Date  15-Jan-2016 AVAILABLE
party 1 Rieiated Party 10 |Relstionship Type D"“,“"““" ]:""’I rue Relation | o e Colateral |Share Expesure  Share income
OOO005295 | 00005296 | Busi Authorized Signat| Authorized Signat[] (m] (]

3

5 ADF Screen Customizations Using MDS | 57



5.7 Customization Layer Use Cases

To create the customization as mentioned in this use case, start JDeveloper in the Default Role and follow
these steps:

Step 1 Create Customization Project

1. As mentioned in the section Customization Project, create a project
(com.ofss.fc.demo.ui.view.party) to hold the customization.

2. Add the required libraries and JARS along with JAR which contains the above screen
(com.ofss.fc.ui.view.party jar).

3. Enable the project for seeded customizations.

Step 2 Create Binding Bean Class
You will need to create a class which will contain the binding for the Ul Components which will be added to
the screen during customization. Create the class with the following features:

m Private members for the Ul Components and public accessors for the same.

m Private member for the backing bean of the screen (Party SearchMaintenance) which is initialized in the
constructor of this class.

m Private member for the parent Ul Component of the newly added Ul components and public accessors
which returns the corresponding component of the backing bean.

58 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-14 Creating Binding Bean Class

wbzmoPnnyScarchMmmnan:e.pm L]
- e 258 ORI AMNR EE
package com.ofss, fo.demo.ul. view. party.partySearch.backing:
®import ..
= public class DemoPartySearchMaintenance {

public static final String PARTY RELATTONSHIP TABLE WO = “FelatedPartieséndDetailsTablev0lIterator”;
public static final String PARTY SEARCE NAINTENANCE PAGE_DEFF = "com_ofss_fc_ui_wiew_party_PartySearchMaintenancePageDefl”:

private FichPanelGrouplayout pgll:
private FichPanelBox olpbl:
private RichPanelCollection olpel:
private FichTable oltl;

private FichDutputText olotl;
private FartySearchMaintenance partySearchaintenance;

2 public DesoPartySearchMaintenance() {
TOpET L),
partySearchiaintenance = (PartySearchMaintenance} ELHandler.get (PartyProxyConstants, BACKING BEAN PARTY SEARCH):

=] public void setPgll (RichPanelGroupLayout pgll) {
this.pgll = pgll:

2 ottt e e
this.pgll = partySearchiaintenance. getPgll():
return pgll;

T

1]

public void set0lpbl (FichPanmelBox olpbl} { [:}
this.elpbl = olpbl:

= public RichPanelBox getOlpbl() {
rieturn olphl:
}

a2 public wvoid setdlpel (RichPanelCollection olpel) {
thiz.olpel = olpcl:

Step 3 Create Event Consumer Class

You will need to create a class which contains the business logic for populating the table Ul component with
the related parties’ data. The search and selection of a party in the Advanced Search screen raises an event.
By binding this event consumer class to the party’s selection event, the business logic for populating the
related party’s data will be executed automatically on selection of a party by the user.

The original event consumer class bound to this event contains the business logic for populating the accounts
data. Since your event consumer class would be over-riding the original binding, you will need to incorporate
the original business logic for populating the accounts data in your event consumer class.

5 ADF Screen Customizations Using MDS | 59



5.7 Customization Layer Use Cases

Figure 5-15 Create Event Consumer Class

i DemmoPartySearchHamtenance_jaa X |Enuul’-murd|t:oum.]m x |

- SRS K QALBER AMeR ZFO

package com.ofss. fo.demo.ul. view. party.partySearch.event;

®import ...
= public class DemoPartySearchConsuser {

private static final String FRIS_COMPONENT KANE = DemoPartySearchionsumer. class,getName();:
private final Logger logger = MultiEntitylogger.getUniquelnstance(] . getlogger{this.getClass (). getNane(])];

= public DemoPartySearchConsumer() {
super ()

= public void handlefccountTaskCodesndPartyRelationshipEvent (Object object) {

PartySearchTaskFlowHelper helper = {(PartySearchTaskFlowHelper)object;

Original Logic for Accounts
Strang partyld = helper.getSelectedPartyId(): riginal Logic for Accaunts

fillAccountsTable{partyId):
I fillPartyRelationshipTable(partyId): | MNew Logic for Party Relationships
}

I
=] private wvoid fillPartyRelationshipTable{String partyld) { h'
DemoPartySearchMaintenance demoPartySearchMaintenance = (DemoPartySearchMaintenance)ELHandler. get ("#{requestScope. DemoP
demoPartySearchMaintenance, get0lpbl() . setvisible{true):

PartyRelationshipResponse response = null;

ViewObject partyRelationshipTableVd = IteratorHandler. getviewObiect (DesoPartySearchMaintenance . PARTY SEARCH NATNTERANCE
partyRelationshipTablevd.clearCache();

try {
IPartyRelationshipipplicationServiceProny elient =
(IPartyRelationshipApplicationServiceProxy JProxyFactory . getInstance() . getProxy (com.ofss. fo.ul. common.consta
SessionContext sessionContext - SessionContextFactory,getSesstonContextFactory (). getSessionContextInstance();
sessionContext. setServiceCode (FelatedPartyConstants. Fask Code):

response = client. fetchallRelatedPartiesfndRelationships(sessionContext, partyld}:

if (response != null && response.getStatus() != null &5 response.getStatus().getErrorCode().equals(=G")) {
if {response.qetPartyRelationshipsOTo(}. length = 0} {

Step 4 Create Managed Bean

You will need to register the binding bean class as a managed bean. Open the project's adfc-config.xml which
is present in the WEB-INF folder. In the Managed Beans tab, add the binding bean class as a managed bean
with request scope as follows:

Figure 5-16 Creating Managed Bean

[Clladfe config. il x g
=g
General
Description & Managed Beans * K
Acthvities .
Control Flows Hame * a Scope *
Managed Beans inbenance demao. Ui view party partySearch. backing DemoP artySearch request
Metadata Regources S Managed Properties: DemsPartySearchMaintenance XK
| Marme ® & Class Value ]
4

Step 5 Create Data Control
For the event consumer class's method to be exposed as an event handler, you will need to create a data
control for this class.

60 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

1. Inthe Application Navigator, right-click the event consumer Java file and create data control.

2. On creation of data control, an XML file is generated for the class and a DataControls.dcx file is
generated containing the information about the data controls present in the project. You will be able to
see the event consumer data control in the Data Controls tab.

Figure 5-17 Create Data Control

=-[5] com.ofss.fc. demo. ui.view. party
=1 Application Sources
=@ com.ofss fc
=0 demao
=@ ui
= G view
=1 party
=0 partySearch
= backing
! DemoPartySearchMaintenance java
=@ event
: @ DemoPartySearchConsumer. jaw,

Open

=0 Resources
- Exclude Project Content

' gl ADF Library Dependencies
=] web Content K Delete
=0 WEB-INF Eind Usages. . CerleAltU
[ adfc-config.xml -
; Efaces-{onﬁg.xml Make Ctrl+ Shift-F5
[e3] trinidad-config. xmi Rebuild Ale+ Shift-F3
L fly web.xml B run cerlF11
@[ Page Flows 2 Debug
& [5] com. ofss.fe.uiview [10.150.22.95] —
Refagctor 3
G} peformat Curl+AltL
Qrganize Imports Cerl+Alt-0
Versioning ]
Compare With ]
Replace With ]

Create Service Interface.

Create Web Service...

I} Create Data Contrel

3. Restart JDeveloper in the Customization Developer Role to edit the customizations.

4. Ensure that the appropriate Customization Context is selected.

Step 6 Add View Object Binding to Page Definition
You will need to add the view object binding to the page definition of the screen. To open the page definition of
the screen, follow these steps:

1. Inthe Application Navigator, open the Navigator Display Options for Projects tab and check the Show
Libraries option.

2. Inthe navigator tree, locate the JAR that contains the screen (com.ofss.fc.ui.view.party.jar).

3. Inside this JAR, locate and open the page definition XML
(com.ofss.fc.ui.view.party.partySearch.pageDefn. Party SearchMaintenancePageDef.xml)

4. After opening the page definition XML, add a tree binding for the view object

5 ADF Screen Customizations Using MDS | 61



5.7 Customization Layer Use Cases

(RelatedPartiesAndDetails TableVO1) as follows:

Figure 5-18 Adding View Object Binding to Page Definition - Add Tree Binding

EParwSearchMainhenancePaquef.nﬂl x =
Page Data Binding Definition i

This shows the Oracle ADF data bindings defined for vour page. Select a binding to see its relationship to the und

Data Binding Registry: [com/ofss/feluinview/party/DataBindings cpx

[ Bindings and Executables
= Model

Bindings % / x Executables Ei / x
=] handleTaskCodeChangeEvent
[E] handleCustTaskCodeEvent
[E handleAccountTaskCodeEvent
ﬂ AccountDetailsViewObjl

(= variables

&1 taskFlow - PartySearchTaskFlowl
=] AccountDetailsViewObjliteratar
taskFlow - accountDetailsTaskFlowl

Insert Iltem

Select the category of components from which yvou would like to find an item:

[Generic Eindings 'I
Select the item to be created:

ﬁ graph o
& tist

&) listofvalues

methodaction
@ navigationlist

[ table

[igh treetable E -
Description:

Tree binding for the control. Tree binding lets users view a e

hierarchical list of attributes derived from master-detail

lrelatinnshins as snecified by the business senvices in vour Madel

—r— .

62 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-19 Adding View Object Binding to Page Definition - Update Root Data Source

Eparw‘aearthMaintenoncePageDﬁ'.ml X =
Page Data Binding Definition iy

This shows the Oracle ADF data bindings defined for vour page. Select a binding to see its relationship to the und

Data Binding Registry: jcom/ofssifciuifview/party/DataBindings. cpx

Bindings and Executables

= Model
Bindings i% / x Executables l* / x
[ handleTaskCodeChangeEvent (& variables
=] handlecustTaskCodeEvent 6] taskFlow - PartySearchTaskFlowl
[=] handleAccountTaskCodeEvent =] AccountDetailsViewObjliterator
ﬂ AccountDetailsViewObjl |8 taskFlow - accountDetailsTaskFlowl

™ Create Tree Binding

Select the data source for the root tree node, and decide which attributes you want to
display in the tree. To add additional tree level rules for child collections, select the
parent tree level rule andclick the Add icon. If no child collections are available for the
selected node. the Add icon is disabled.

Root Data Source: I_@PamﬂbnHoduIeDataControl.ﬂelatedparties... v | Add. |

Tree Level Rules: |PartyAppModuleDataControl. RelatedPartiesAndDetailsTablevol |

| B com.ofss fc.ui.model party relatedparty. vo. RelatedPartiesAndDetailsTableV

Accessor: v ["] Enable Filtering:

Ayailable Attributes: Digplay Attributes: | 0
SerialNumber =
DeleteCheck
DirectRelationshipMame
ImverseRelationshipMame

DirectRelationCode

in Context

mo (demo). -|

CCEE
[
L

| B Target Data Source EmMo

1 l OK l [ Cancel ]

5. InRoot Data Source, locate the view object which is present in the PartyAppModuleDataControl.
Select the required display attributes and click OK.

Step 7 Add Method Action Binding to the Page Definition

You will need to add the method action binding for the event consumer data control to the page definition of the
screen.

5 ADF Screen Customizations Using MDS | 63



5.7 Customization Layer Use Cases

1. After opening the page definition XML, add the method action binding for the
DemoParty SearchConsumer data control to the page definition as follows:

Figure 5-20 Page Data Binding Definition - Insert Item

[B)PartysearchMaintenancePageDef xmi * =
Page Data Binding Definition =i

This shows the Oracle ADF data bindings defined for vour page. Select a binding to see its relationship to the und

Data Binding Registry: /com/ofss/fc/uifview/party/DataBindings. cox
[ Bindings and Executables |
= Model
Bindings %+ 7 R Executables o 7

[= handleTaskCodeChangeEvent
handleCustTaskCodeEvent
[E] handleAccountTaskCodeEvent
@ AccountDetailsViewObjl

(5] variables

|67 taskFlow - PartySearchTaskFlowl

| =] AccountDetailsViewObjliterator

[ taskFlow - accountDetailsTaskFlowl
RelatedPartiesAndDetailsTableVOliterator

2 Insert Item

Select the category of components from which vou would like to find an item:

F'; RelatedPartiesAndDetailsTablevViol

[Generic Bindings ']
Select the item to be created:

UE] graph ]
[ tist

G listofvalues
methodAction

navigationlist

[ table
Ea tree
g} treetable b
Description:
Method binding for the contral. 2
W
[k ][ concel
L | W

2. Browse and locate the data control and click OK.

64 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-21 Page Data Binding Definition - Create Action Binding

[PlrartysearchMaintenancerageDef xmi * &
Page Data Binding Definition “

This shows the Oracle ADF data bindings defined for vour page. Select a binding to see its relationship to the und

Data Binding Registry: /com/ofss/fc/uifview/party/DataBindings. cpx

[ Bindings and Executables | Contextual Events || Parameters |
= Model

Bindings a3 7 K Executables 4 7
handleTaskCodeChangeEvent
[=] handleCustTaskCodeEvent
handleAccountTaskCodeEvent
&L AccountDetailsViewObjl

[ ] variables

| taskFlow - PartySearchTaskFlawl
AccountDetailsViewObjliterator

|6} taskFlow - accountDetailsTaskFlowl

. RelatedPartiesAndDetailsTablevol — |£] RelatedPartiesAndDetailsTablevVOliterator

™ Create Action Binding

Select a data collection and the action you want vour control to initiate. The control initiates the action on
the data objects of the selected collection.

Data Collection: h
& [f} DDBankeraccountConfigurationEventProducer
3] [3 DDCloseAccountEventProducer
2] @ DeliverDocumentEventProducer
] DemoPartySearchConsumer
- [#}) DepositBasicDetailsEventProducer
1+ E DirectRolePartyDetailsConsumer
& @ DocumentCategoryEventConsumer

Select an [terator: [

Operation: |handlem:countTaskCodeAndPamﬂelationshipEventEObjectI -
Parameters : ull
P
,.I Name Type Value Option T
[ object java.lang. Object l 'J D

1 Help [ oK ]| cancel |

U

Step 8 Edit Event Map
You will need to map the Event Producer for the party selection event to the Event Consumer defined by you
in the page definition.

1. Inthe Application Navigator, select the page definition XML file.

2. Inthe Structure panel of JDeveloper, right-click the page definition XML and select Edit Event Map.

5 ADF Screen Customizations Using MDS | 65



5.7 Customization Layer Use Cases

Figure 5-22 Edit Event Map

Eparh'senr:hﬂnintennncepagebef.nﬂ - Structure = l Q

-

-] Warnings (1)
; :;1 Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.
= E PartySearchMaintenancePageDef

{0 parameters Insert inside PartySearchMaintenancePageDef »
[ executables
B 3 bindings Generate Resource Bundle
2 {g,} eventMap E= Edit Authorization...
& handleTaskCodeChanget| SN S
@@ handleCustTaskCodeEven 3 cut Wi
@@ handleAccountTaskCodeE Copy curlc
x Delete Delete
Go to Source
Find Usages... Ctrl+Al-U
Go to Properties
Go to Declaration

3. Inthe Event Map Editor panel, edit the mapping for the required event.

4. Select the newly added Event Consumer's method.

66 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-23 Event Map Editor

Add, Update and Delete event entries

e

Events Map 4 / x

Producer Event Name Consumer

PartySearchTaskFlowl.Party... handleTaskCodeChang... handleTaskCodeChangeEvent
PartySearchTaskFlowl Party... handleCustTaskCodeE... handleCustTaskCodeEvent

L S e

PartySearchTaskFlowl.Party...|handleAccountTaskCod...|handleAccountTaskCodeEvent

™ Modify EventMap Entry

i

Select an appropriate Producer, Event Name and Consumer.

Event Name: |handleAccountTaskCodeEvent |
Consumer: ageDef.handleAccountTaskC0deAndPartyRelationshipEvent
Consumer Params 4 X

Param Name Param Value

pavLoad #{pavLoad}

ok || cancel |

Step 9 Add Ul Components to Screen

After making the required changes to page definition of the screen, you will need to add the Ul components to
the screen JSFF. After opening the JSFF for the screen

(com.ofss.fc.ui.view.party.party Search. Party SearchMaintenance.jsff), follow these steps:

N o g s~ D=

Drag and drop the Panel Box, Panel Collection and Table components onto the screen.

Set the required columns for the Table component.

Drag and drop the Output Text or Check Box components as required inside the columns.

For each component, set the required attributes using the Property Inspector panel of JDeveloper.
Add the binding for required components to the binding bean members.

Add the view object binding to the Table component.

Save changes made to the JSFF.

5 ADF Screen Customizations Using MDS | 67



5.7 Customization Layer Use Cases

Figure 5-24 Add Ul Components to Screen

&

B

[#Partys
(-

wisf 2|
43

mmandToal barBut ton te:t-'l{thaHrﬁaamhmlnt?nan:v.LEl_En‘l}' binding="#{PartySearchMaintenance.cbl}” id="cbl®

=af:activet
<! fat:pane
=/af rtonlbars
=af:reglon valve="#{bindings.PartySearchTaskFlowl. regionModel}” id="rl" binding="#{PartySearchMaintenance.rl}" =
<af:panplBox xmlns:af="hitp://xnlns.oracle.confadf/faces/rich” text="s{rbfelatedParty .LBL_FELATION DETAILS FANEL}" id="olpbl® E

=af:panelCollection xalns:af="http:/ualns.orac

@

<afreolumn xalng:af="http:/fonlns, oracle.
<af coutpatText xmlnz:af="http: /famlns.

«/af : column

=af:column xalng:af="hitp://xalns. oracle.
<af routput Text xalns:af="http://ealns.

=/af reolumns

<af:column xalns:af="http://ualns,oracle
<af toutpartText xelns:af="http://xmlns.

<fafrcolumn=

<gfzeolumn xalns: af="http:/fonlns, oracle.
<af routpartText xmlnz:af="http: //xmlns.

o/ af : columne

<af:column xalns:af="http:/fanlns, oracle.
<af routputText xalng:af="http: /fualns.

</af : column-

<af:column xalng:af="http:/fenlns. oracle.
<af soutput Text xmlnz:af="http: //fzmlns

</af: column=

<af:coluen xalns: sf="hitp:/fonlns . orscle.

w

<af rtabile xalns:af="http://aonlng. oracle. consadf /aces/rich” value="s{bindings. FelatedPartiesndDetallsTablevdl collection

le.comfadf/faces/rach” id="0lpel” binding="#{0esoFartySearchMaintenanceHelper

comsadf rfacessrich® sortables"false” headerTest="#{rbRelatedParty  SERTAL_NUME
oracle.con/adf /faces/rich® walues"#{rov. Serialhusber}” id="olot5"/>

con/adf facessrich® sortable-"false® headerText="#{rbRelatedParty LBL_PARTY ]
oracle. confadf ffacesrich values"{row. PartyId}” id="olotl®s>

con/adf /faces/rich” sortables"false” headerText="#{rbfelatedParty.LBL_RELATEL
oracle. con/adf/faces rich™ value="#{row.RelatedPartyld}” id="olotd" /= 1

comsadf rfacessrich® sortables"false” headerText="#{rbRelatedParty LBL_RELATIO
oracle.consadf/facessrich” values"#{rov. FelationshipTypel” id="olota"/>

con/adf facessrich® sortable-"false® headerText-"s{rbRelatedParty.LEL_DIRECT
oracle. confadffacessrich” value="2{rov. DirectRelationshipName}” 1d="0lot6" /3

con/adf rfacessrich” sortables"falze” headerText="#{rbfelatedParty . LBL_INVERSE
oracle.con/adf/facessrich value="#{row. Inversefelationshiphzne}* id="olota" 4

con/adf facessrich® sortables"false® headerText="Share Collateral” id="oleé":

=aff rsel ectBool eanCheckbox xmlns:af="http: //ealns. oracle. confadf ffacessrich” texts" * label="#{rbRelatedParty.Lbl_sk
=/ af : column>
waf:column xalns:af="http://faalns,oracle.cons/adf faces/rich® sortable="false® headerText="Share Exposure™ id="olc3"»
;af:;?lrdﬂwlcm(hﬂbu: xmlns:af="http: //ealns. oracle. comnfadf faces /rich” text=" ° label="#{rbRalatedParty.Lbl_sk
</al : colusn-
<afrcolumn xalns:afe"http: /fonlng, oracle. consadf rfacessrich® sortables"false” headerText="Share Income” id="oled™=
<af :sel ectBool eanCheckbox xmlns:af="http://xmlns.oracle. con/adf facensrich” text=" ° label="#{rbRelatedrarty.Lbl_st
</af : columne
=/at:tables
=/af :panel Col lect ion=
=/ af ;panel Box=
=af:panel Grouplayoat binding="#{FartySearchMaintenance.pgli}l” vizible="false” id="pgl3~ layout="scroll” styleClass="4FStretchi
=af:panelSplitter 1d-"ps2” binding="#{PartySearchMaintenance.ps2l” splitterPosition="400" inlineStyle-"height:380px:" styled
= =f:facet name="first =
Ispirost =7 af panelgroupl gll » aganlse:le:lpil. -

Design | Sewrce [ Bindings | Preview | ¢

0 0 W

3

After saving all these changes, you will notice that JDeveloper has created a customization XML for each of
the customized entities in the ADF Library Customizations Sources folder packaged as per the corresponding
base document's package and customization context (Customization Layer Name & Customization Layer
Value). These XML's store the difference between the base and customized entity. In our customization, you

can see the following generated XML's:

m PartySearchMaintenancePageDef.xml for the page definition customizations.
= DataBindings.cpx.xml for the data binding (view object binding) customizations.

m PartySearchMaintenance.jsff.xml for the Ul customization to the screen JSFF.

68 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-25 Application Navigator

1t (Zlapplication Navigator * =]
v SR
~ Projects Ql@v-E-
&3] com.ofss.fc.demo.ui. OptionCC [10.180.22.95] "~

= com.ofss.fc.demo.ui.view.party
=-{] ADF Library Customization Sources
=i com
=0 ofss
=@ fc
S ui
=0 view
=@ party
- mdssys
= cust
- option
=i} demo
@ DataBindings. cpx.xml
= partySearch
= form
= mdssys
= cust
= option
= demo
; E PartySearchMaintenance. jsff.xml
-0 pageDefn
2@ mdssys
= cust
= option
=i demo
L @ PartySearchMaintenancePageDef xml.xml

Step 10 Deploy Customization Project
After finishing the customization changes, exit the Customization Developer Role and start JDeveloper in
Default Role. Deploy the customization project as an ADF Library JAR (com.ofss.fc.demo.ui.view.party.jar).

1. Goto the Project Properties of the main application project and in the Libraries and Classpath, add
the following JARS:

m Customization Project JAR (com.ofss.fc.demo.ui.view.party.jar)
m Customization Class JAR (com.ofss.fc.demo.ui.OptionCC.jar)
m All dependency libraries and JARS for the project.
2. Start the application and navigate to the Advanced Search screen.
3. Search for a party ID and select a party from the Party Search Results table.

4. On selection of a party, the Relation Details panel containing the related party’s data is displayed.

5 ADF Screen Customizations Using MDS | 69



5.7 Customization Layer Use Cases

Figure 5-26 Party Search

5.7.2 Approvals Framework

It is recommended to use ADF screen extensions for Ul changes instead of mds in this scenario as it is easier

to upgrade to new version of product however the mds approach is described below.

This third example of customization explains adding a Date Component to an existing screen to capture date

input from the input. This input is saved in the database.

Use Case Description: The Party — Contact Information — Contact Point screen is used to store the
various contact point details for a party. In the Contact Point Details tab, the user can select a Contact Point
Type and a Contact Preference Type and provide details for the same. User will be adding a field Expiry Date
as a date component to this tab. User will be adding a table to the database to save the user input for this field

and services for this screen will be added or modified.

PID40
- Search Individual
Party I DO00OS296
Shart Name
Search | Reset
= Party Search Redults Chear
Viewe [l Detach
Date of Birth or
Party 1D Name T Musmber of Roles Pamy Class [Emadl 1D
I Li~ I Incarporation L4
OCO005I06 Daniei Jshnson Imdividu 2 05-Dec-1980 Oahars dipics, patnaik Gorace. com
- Relation Detalls
Vigw=  [ff Demncn
Direct Relstion | [nverse Relation
Serial No. Farty Id Related Party 10 Relationship Type N:m Share Collateral Share Exposure  Share Income
I I
1 DOD00S2IS | [ L Signat Signat
Account Detalls “ Account Specific Detalls
Serial Number  Account Number | Account Type Acco mber  SO00G00000007TS 10 Daniel Corp
1 00000000007 ILON Hceo erirg  15-Jan-2016 Accen AUD
| Date
Party 1D OOO0OS297 Daniel Carp
Offer LOFOO3 RAB TAILORED HOME Branch 082991 U Bank Operations BR
LOAN - LOFOOX
e FC20160150018764 Homie Loan
Te 4 $200,000.00 nt 3i-Jam-2016
N Dt
Date Of My ¥ 15-Jan-2007 Accrual Status Meemal
Approved Amount  $200,000.00 t§0.00
Outstanding Balsnce  $0.00 us Cloged

70 | Oracle Banking Enterprise Originations Ul Extensibility Guide




5.7 Customization Layer Use Cases

Figure 5-27 Contact Point Screen

PID41
Contact Point
o Create 7 Upaate 7 Ok & Clear (3 Exit S Print
= Party Detalls
000005295 Date of 1A
NO veh 082991-U Bank Operations BR EncCrpormion NI
Company Name Daniel trustes Roles & Customer
Party Class FOREIGN PUBLIC BODY * Trustee
Party Type LEG Onboarding Date 15-Jan-2016
* Address Detalls
= Contact Point Details
= Contact Point Type  Mobile :I * Contact Preference Type [Home j
Seasonal Start Date Seasonal End Date
Allowed Purposes [¥] Communication
Oaiernt
Preferred Contact |:| Preferred Contact |
Marketing Consent D Marketing Consent
Marketing Consent Start Date Marketing Consent End Date
= Telephone Detalls
Country Code Area Code
Number 32577789 Extension
Service Provider VOIP Code
= Timing Preferences
ono [J oND
DND Start BND Eng
Weekdays D Weckdays
n To
Weekends [] Weekends
From To
= Hide Modification History
Created By ofssuser On 24-Aug-2012 12:00:00 AM Approved ]Z| ] 2 OF »
Approved By ofssuser On 24-Aug-2012 12:00:00 AM Active [

To create the customization as mentioned in this use case, follow these steps:

Step 1 Host Application Changes

Since in this use case you need to save the input data in the database of the application, you need to do
certain modifications on the host application before creating the customizations on the client application.
Following are the changes that need to be done to the host application.

Step 2 Create Table in Application Database

To save the input data for the Expiry Date field, create a table in the application database. The table will also
need to have the Key columns for this field and the columns needed to store information about the record.
Create appropriate primary and foreign keys for the table as well.

5 ADF Screen Customizations Using MDS | 71



5.7 Customization Layer Use Cases

Figure 5-28 Create Table

CREATE TABLE "FLX_PI_CONTACT_EXPIRY"
(

*PARTY_10" VARCHAR2(40 BYTE) NOT NULL EMMBLE, | Key Columns

“CONTACT_POINT_TYPE" VARCHARZ2(3 BYTE) NOT NULL EMABLE,

| "CONTACT _PREF _TYPE" VARCHAR2(4 BYTE) MOT NULL ENABLE, . .

“EXPIRY_DATE" DATE. - —— Expiry Date Field

“CREATED_BY* VARCHARZ2(254 BYTE) NOT NULL ENABLE,

“CREATION DATE" TIMESTANP (S) NOT NULL ENABLE, .

*LAST_LPDATED, B¢ VARCHAR2(254 BYTE) NOT NULL ENABLE, Record Information Columns
“LAST_UPDATE_DATE" TIMESTANP (6) NOT NULL ENABLE,

*OBJECT_VERSION_NUMBER"  NUMBER(S,0) NOT NULL ENABLE,

“0BJECT_STATUS FLAG" CHAR{1 BYTE) NOT HULL ENAELE,

CONSTRAINT "FLX_PI_CONTACT_EXPIRY_PK"™ PRIMARY KEY ("PARTY_ID", "CONTACT_POINT_TYPE", ~CONTACT_PREF TYPE") EMABLE,
CONSTRAINT “FLX_PI_CONTACT_EXPIRY_FKL* FOREIGN KEY (“PARTY_ID*) REFERENCES “FLX_PI_PARTIES_B* (“PARTY_ID") ENABLE

After creating the table, you need to create the domain object and service layers. To create these entities,
follow these steps.

Step 3 Create Java Project

To contain the domain object and service layer classes, create a Java Project in eclipse. Give atitle to the
project (com.ofss.fc.demo.party.contactexpiry) and add the required projects to the classpath of the project.

Figure 5-29 Create Java Project

™ Properties For com.ofss.Fc.demo.party.contactexpiry

') Java Build Path -
» Resource :
Builders @source SProjects mLibraries “¢Order and Export
File Transfer Required projects on the build path:
Formatter » & com.ofss.Fc.app.service.json _ Add...
Java Build Path » = com.ofss.Fc.app.service.vo
» Java Code Style » &=z com.ofss.Fc.app.xface
» Java Compiler » = com.ofss.fc.appcore
> Java Editor » 2 com.ofss.fc.appcore.dto
Javadoc Location » & com.ofss.fc.appx.client.proxy
Preview Settings » = com.ofss.Fc.appx.json.client
' Project Facets » =z com.ofss.Fc.appx.service.json
! Project Natures » = com.ofss.fc.appx.service.vo
' Project References » = com.ofss.fc.appx.spi
' Run/Debug Settings » & com.ofss.fc.common
*» Task Repository » = com.ofss.fFe.datatype
Task Tags *» & com.ofss.fc.enumeration
* » validation » & com.ofss.fc.framework.domain
wikiText * = com.ofss.fc.framework.dto

» i= com.ofss.Fe.infra
» 2 com.ofss.fc.module.party

| @ cancel | [0k

Step 4 Create Domain Objects
You need to create the domain objects for the newly added table. As per the structure and package
conventions of OBP, create the domain objects as follows:

72 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

1. Create class (com.ofss.fc.demo.domain.party.entity.contact. ContactExpiryKey) for the key columns
of the table. This class must extend the com.ofss.fc.framework.domain.AbstractDomainObject
abstract class. Add the properties, getters and setters for the key columns of the table in this class.
Implement the abstract methods of the superclass.

Figure 5-30 Create Domain Objects

Jl iContactExpiryjova | [/ ContactBxpicyKeyjova &3 . (1) ContactExpiryjave =
| package com.ofss.fc.deso.domain.party.entity.contact;
fmport com.ofss. fc.enumeration. ContactPointType;
i isport com.ofss.fc.enumeration.ContactPreferenceType;
% import com.ofss.fc.framework.domain. AbstractDosainObjectiey;

! public class ContactExpiryMey extemds AbstractDomainObjectKey {

érial Verilon

private static final \oag serialVersionUID = -4179806027380497671L;

2 Barty 1
Party 1d

private String partyld;

t Point Type
1 ¥P

private ContactPointType contactPointType;

private ContactPreferenceType contactPreferenceType;

2. Create interface (com.ofss.fc.demo.domain.party.entity.contact.|ContactExpiry) for the domain object
class with getters and setters abstract methods for the Key domain object and the field Expiry Date.
This interface must extend the interface com.ofss.fc.framework.domain.AbstractDomainObject.

Figure 5-31 Create Interface

) IContactExpiryjava £ U ContactExpiryKey java J) ContactExpiryjava =
1 package com.ofss.fc.deso.domain.party.entity.contact;

isport com.ofss,fc.datatype.Date;
4 isport com.ofss.fc.framework.dosain. IAbstractDomainObject;

6 public interface IContactExpiry extends IAbstractDomainQbject {
public ContactExpiryKey getkey();
public void setKey(ContactExpiryKey key);
public Date getExpiryDate();

public void setExpiryDate(Date expiryDate);

3. Create class (com.ofss.fc.demo.domain.party.entity.contact. ContactExpiry) for the domain object.
This class must implement the previously created interface and extend
com.ofss.fc.framework.domain.AbstractDomainObject abstract class. Add the properties, getters and
setters for Key object and Expiry Date field. Implement the abstract methods of the superclass.

5 ADF Screen Customizations Using MDS | 73



5.7 Customization Layer Use Cases

Figure 5-32 Create Class

4 WortactExpiryjava 1] ContactExpinteyjove L) ContactExpinyjiva i3
1 package com.ofss.fc.deso.domain.party.entity.contact;
isport com.ofss.fc.datatype.Date;
i import com.ofss.fc.framework.domain, AbstractDosainObject;
5 isport com.ofss.fc.frasework.domain,AbstractDosaindbjectKey;

7 public class ContactExpiry extends AbstractDomainObject implesents IContactExpiry (

* Serial Version

private static fimal long serialVersionUID = -4179806827380497671L;

Contact Expiry Key

private ContactExpiryKey key;

private Date expiryDate;

After creating the domain objects, build the project. You need to use the Flex cube development
eclipse plug-in to generate the service layers.

Step 5 Set OBP Plugin Preferences

Before using the plug-in for generating service layer classes, you will need to set the required preferences for
the plug-in. In eclipse, go to Windows — Preferences — OBP Development and the set the preferences as
follows.

Figure 5-33 Set OBP Plugin Preferences

™ Preferences

@@  Service Publisher - -

—

* General
* Ant
* Aptana Studio Service URL http://localhost:8080
Aspect) Compiler
* Data Management
¥ FLEXCUBE Development Path of User Home fhome/rshanbha/Work/eclipse_workspaces/ngp/config Browse...
GEFU
GEFX
JuUnit
. Procedure Wrapper h
Reverse Engineering
RMI
Service Deployer
Service Publisher
WorkSpace Path
XML/JSON Facade
i1 Help
iC Install/Update
T Java Restore Defaults Apply

Output project location Client Change..,

Path of Dynamic Property file: | /home/rshanbha/Work/eclipse_workspaces/ngp/config Browse...

| '\?\ Cancel OK

74 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-34 Set OBP Plugin Preferences

v

General

» Ant

Aptana Studio
Aspect) Compiler
Data Management

v

v

GEFU
GEFX
JUnit
Procedure Wrapper
Reverse Engineering
RMI
Service Deployer
Service Publisher
WorkSpace Path
XML/JSON Facade
Ic Help
> InstallfUpdate
" Java

) Preferences

&

¥ FLEXCUBE Development

WorkSpace Path =1 v

Path of the JavaProjects: /home/rshanbha/Work/eclipse_workspaces/ngp Browse...

Restore Defaults Apply

Cancel oK

5 ADF Screen Customizations Using MDS | 75



5.7 Customization Layer Use Cases

Figure 5-35 Set OBP Pugin Prefernces

® Preferences

@  XML/JSON Facade L -
* Ceneral
> Ank Path of the Facade Library folder in your system: | fhome/rshanbha/work/eclipse_workspaces/generator Browse...
* Aptana Studio Sample XML Output Path: fhome/rshanbhafwork/eclipse_workspaces/generator/xmil Browse...
Aspect) Compiler

> Data Management Facade XSD Output Path: fhome/rshanbha/Work/eclipse_workspaces/generator/xsd Browse...
v FLEXCUBE Development |  Listof XSDincluded

CEFU New...

GEFX

JUnit

Procedure Wrapper

' Reverse Engineering

RMI

Service Deployer

Service Publisher

WorkSpace Path

XML/JSON Facade
I Help I}
' Installfupdate
v Java

Java EE

'+ Java Persistence Restore Defaults Apply

@ Cancel oK

Step 6 Create Application Service
You need to generate the application service layer classes using the OBP development plugin. Follow these
steps:
1. Open the domain object class (ContactExpiry).
On the getter method of the Key object, add a javadoc comment @PK.

3. Right click on the editor window and from context menu that opens, choose OBP Development —
Generate Application Service.

4. Inthe dialog that opens, select the Java project for generated classes. You can use the project
previously created by you.

76 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-36 Create Application Service

ApplicationService Generator

Choose APP Project and package name

APP project location com.ofss.Fc.demo.party.contactexpir

Enter the App package: |com.ofss.fc.demo.app.party.contact

‘Generate

5. Click on Generate. Application Service classes is generated in the project.

The Java source might contain some compilation errors due to syntax. Fix these errors and build the
project. The following classes should have been generated in the project.

Figure 5-37 Application Service Classes Generated

& * com.ofss.fc.demo.party.contactexpiry [master]
v {Bsrc

v 8 com.ofss.fc.demo.app.party.assembler.contact
» 1)) ContactExpiryAssembler.java

v i com.ofss.fc.demo.app.party.dto.contact
> 1) ContactExpiryDTO.java
» [J] ContactExpirylnquiryResponse.java
» ) ContactExpiryKeyDTO.java

¥ 8 com.ofss.fc.demo.app.party.service.contact
» [1) ContactExpiryApplicationService.java
» 1)) IContactExpiryApplicationService.java

¥ 8 com.ofss.fc.demo.app.party.service.contact.ext
» [J] ContactExpiryApplicationServiceExtExecutor.java
» [J) IContactExpiryApplicationServiceExt.java
> 1)) IContactExpiryApplicationServiceExtExecutor.java
> [J) VoidContactExpiryApplicationServiceExt.java

¥ # com.ofss.fc.demo.domain.party.entity.contact
> [J) ContactExpiry.java
» I ContactExpiryFactory.java
> [J) ContactExpiryKey.java
» [J) IContactExpiry.java

¥ [ com.ofss.fc.demo.domain.party.entity.contact.repository
» [1) ContactExpiryRepository.java

¥ i# com.ofss.fc.demo.domain.party.service.contact
» [J] ContactExpiryService.java

Step 7 Generate Service and Facade Layer Sources

5 ADF Screen Customizations Using MDS | 77



5.7 Customization Layer Use Cases

Before generating the service and facade layer sources, you need to modify the Data Transfer Object (DTO).
When a service call is made from the client application for a transaction related to Contact Point, the Contact
Expiry transaction for the newly added Expiry Date field should be done in addition to the Contact Point
transaction. Hence, the DTO for this transaction should also contain the DTO for the Contact Point
transaction.

To modify the Data Transfer Object:

1. Open the ContactExpiryDTO class.
2. Delete the member ContactExpiryKey member and add ContactPoint member.

3. Re-factor references of the deleted member with the added member.

Figure 5-38 Modify Data Transfer Object (DTO)

4| ContactExpinyteyjov  of ContactExpiryAssembl 1) ContactExplryDTOJav &3 . |f] ContactExpinyXeyDTO. 0) ContactExpiryfactory ™

5

12 public class ContactExpiryOT0 extends DomainObject0TO {

private static final lemg serialVersionlID = 1IL;

private ContactPointDTO contactPointDTO:

private Date expiryDate;

public ContactExpiryOTO(Date expiryDate, ComtactPointDTO contactPoimtdTO) {
setContactPointDTO(contactPointDTO) ;
setExpiryDate (expiryDate);

}

public ContactExpiry@ToO() |
}

public ContactPointDTO getContactPointDTO(N{
return contactPointDTO;

}

To generate the service and facade layer sources:

1. Open the application service class (ContactExpiryApplicationService).

2. Right click on the editor window and from the context menu that opens, choose OBP Development —
Generate Service and Facade Layer Sources.

3. Inthe dialog box that opens, select the Java project for the generated classes. You can use the project
previously created by you. Un-check the Overwrite Existing Files option.

78 | Oracle Banking Enterprise Originations Ul Extensibility Guide




5.7 Customization Layer Use Cases

Figure 5-39 Generate Service and Facade Layer Sources

™ Generate Sources

Generate Layer Sources

| Choose the wsdl output location

» &y com.ofss.fc.demo.module.loan [branches/DEMO/middleware/projects/module/cor
» iy com.ofss.fc.demo.module.party [branches/DEMO/middleware/projects/module/cc
» 7 com.ofss.fc.demo.module.pc [branches/DEMO/middleware/projects/module/com
» i com.ofss.fc.demo.module.pm [branches/DEMOfmiddlewarefprojects/module/corl
» =7 * com.ofss.fc.demo.party.contactexpiry [master]

» =7 com.ofss.fc.enumeration [trunk/core/middleware/projects/module/com.ofss.fc.er
» =¥ com.ofss.Fc.Fact [trunk/core/middleware/projects/module/com.ofss.Fc.Fact]

» &z com.ofss.fc.Fframework.batch [trunk/core/middleware/projects/framework/com.o

=

» =5 com.ofss.fc.framework.domain [trunk/core/middleware/projects/framework/com

e (- P

Overwrite existing files ?

@ Cancel Finish

Click Finish.
Service and facade layer sources is generated in the project.

Certain classes might be generated twice. Delete the newly created copy of the classes and keep the
original.

Certain compilation errors might be present in the generated classes due to erroneous syntax. Fix
these compilation errors.

You will need to include a corresponding call to the Contact Point Application Service in the add,
update and fetch transactions of the Contact Expiry Application Service.

Open ContactExpiryApplicationServiceSpi and modify the code as shown below.

5 ADF Screen Customizations Using MDS | 79



5.7 Customization Layer Use Cases

Figure 5—-40 Modify ContactExpiryApplicationServiceSpi.java

.+ ContactExpiryhpplicationServiceSpijava &1 -

JgetRase();

private transient Logger logger = MultiEntitylogger.getiniquelnstance()
JpetLogger| THIS COMPONENT NAME):

public TransactionStatus addContactExpiry(
com, ofs5.fc,app. context. SessionContext sessionContext,
ContactExpiry0TD contactExpiryDTO, FeeDetailsDTo fecDetails,
LinkedSUDFOTO LinkedUDFOTO) throws FatalException {

com.ofss. fc.demo. app.party . service .contact . ContactExpiryApplicationService manager = mew com.ofss.fc.deso.app.party.service. contact.Contad
B4 Interaction.begin|sessionContext);

B com,ofs5. fc.demo. appx.party. service. contact .ext. IContactExpi ryApplicationServiceSpiExt helper = (com.ofss.fc.demo.appx.party. service. contad
87 getInstance()
JgetServiceProviderExtension|
*com.of5s, 1¢. demo, dppx. party. service, contact  ext. IContactExpiryAppl icat ionServiceSpiliat®,
“com.ofs1, fc.demo. sppx. party.service, contact  ext .(nnt.snthmr,um1(atto:|5¢|v1ce-sp:!x| o H

TransactionStatus transacticnStatus = fetchTramsactionStatus();
String taskCode = null;
try { Iy
helper.preAddContactExpiry(sessionContext, contactExpirydro,
fechetails, linkedUDFOTO);

/* Code added for Contact Point trassaction ®
ContactPointApplicationServiceSpl cpServiceSpl = new ContactPointApplicationServiceSpil();
transactionStatus = ¢pServiceSpl.createfontactPolntisessionContext,

contactExpirydTo. getContactPolntOTO(), feeDetails,

LinkedUDFOTO) ;

* Code added for Contact Point tr:

1 transactionStatus = manager.addContactExpiry(sessionContext,

10¢ contactExplry@To) ;

taskCode = Interaction. fetehlurrentTask();

transactionStatus = applyServicechargeisessionfontext, feebetails,
taskCode);

fillTransactionStatus(transactionStatus);

Map<String, Object> parentDTOMap = mew HashMap<String, Object=();

transactionStatus = addUDF(sessionContext, 1inkedUDFDTO,
parentOTOMap) ;

1il1Transact jonStatus (transactionStatus);

helper.postAddContactExpiry(sessionContext, contactExpirydTO,
feeDetails, LinkedUDFOTO) :

80 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5—-41 Modify ContactExpiryApplicationServiceSpi.java

/| ContactExpiryhpplicationSendcespijava &

}
return transactionStatus;
}

public TransactionStatus updateContactExpiryl
com.ofss.fc app.context.SessionContext sessionContext,
ContactExpiryDTO contactExpiry0TO. FeeDetailsDTO feeDetails,
LinkedUDFOTO LinkedUDFDTO) throws FatalException {

Interaction.begin(sessionContext);

-getInstancel()
getServiceProviderExtension(

TransactionStatus transactionStatus = fetchTransactionStatus();
string taskCode = mell;
try {
helper.preUpdatefontactExpiry(sessionContext, contactExpirydTo,
daarasail 14 Ak .

com,ofss. fc.demo.app . party. service. contact. ContactExpiryApplicationService manager = new com, ofss. fc.demo.app. party.service. contact. Contac

com, ofss. fo. demo. appx . party. service, contact.ext. IContactExpiryApplicationServiceSpiExt helper = (com, ofss.fo.deso.appx.party.service.contal

“com.ofss. fc.demo. appx.party.service. contact . ext. IContactExpiryhpplicationServiceSpifxt=,
“com.ofss. fc.demo. appx.party.service. contact .ext.ContactExpiryApplicationServiceSpiExt=);

f* Code added for Contact Point tramsactiom */

transactionStatus = ¢plfervicetpl. updatefontactPoint{sessionfontext,
contactExpirydTo. getContactPointDTo(), feecDetails,
linkedwOFDTO) ;

¢ Code added fo

ContactPointApplicationServiceSpl {.PSQI‘VACQSD‘A = néwl ContactPointApplicationServiceSpi(); k

16 transactionStatus = manager.updateContactExpiry(sessionContext,

161 contactExpirydTo);

taskCode = Interaction.fetchCurrentTaskil;

transactionStatus = applyServiceCharge(sessionContext, feeDetails,
taskCode) ;

fillTransactionStatus (TransactionSTatus):

Map<String, Objects parentDTOMap = mew HAshMap<String, Objects();

transactionStatus = updatelDF|sessionContext, 1inkedUDFOTO,
porentDTOMap ) ;

fillTransactionStatus(transactionStatus):

helper.postUpdateContactExpiry(sessionContext, contactExpdrydTo,
feeDetails, 1inkedUDFDTO);

fillTrans ran

5 ADF Screen Customizations Using MDS | 81



5.7 Customization Layer Use Cases

Figure 5—-42 Modify ContactExpiryApplicationServiceSpi.java

[« java I -

N =

Interaction.close();

return transactionStatus;

public ContactExpirylnquiryResponse fetchContactExpiry(
com.ofss. TC.app. context. SesslonContext sessionContext,
ContactExpirydTO contactExpiryDTO, FeeDetailsDTO feeDetails,
LinkedUDFOTO 1inkedUDFOTO) throws FatalException {

com,ofss. fc.demo. app. party.service. contact . ContactExpiryApplicationService manager = new com,ofss.fc.demo.app.party.service. contact.Contac
Interaction.begin(sessionContext);

com.ofss. fc. demo. appx. party. service contact ext. IContactExpiryApplicationServiceSpifxt helper = [com.ofss.fc.demo. appx.party.service.conty|
-getInstancel)
.getServiceProviderExtension(
“com.ofss. fc.deso. appx. party. service.contact. ext. IContactExpiryApplicationServiceSplExt®,
“com.ofss. fc.demo. appx. party. service . contact. ext. ContactExpiryApplicationServiceSpiExt®);

ContactExpiryInquiryResponse response = mull;
TransactionStatus transactionStatus = fetchTransactionStatus():
String taskCode = mull:
try
helper.prefetchContactExpiry(sessionContext, contactExpirydTo,
feeDetails, 1inkedUDFOTO):

response = manager. fetchContactExpiry(sessionContext,

contactExpiryDTo);
LT ETl ontact Point transactionfely Y

ContactPointApplicationServiceSpl cpServiceSpi = new ContactPointApplicationServiceSpil);
ContactPointResponse cpResponse = cpServiceSpi.fetchContactPoint(

sessionContext, contactExpiryDTO,getContactPointdTO(),

feeDetails, 1inkedUDFOTO);
it (cpResponse.getContactPoints() != mull

&5 cpResponse.getContactPoints().length t= 0} {

response. getContactExpiryDTO( ). setContactPointDTO(
cpResponse. getContactPoints()(0]);

taskode = Interaction.fetchCurrentTaski);
transactionStatus = applyServiceCharge(sessionContext, feeDetails,
tasklode):
2 fillTransactionStatus(transactionStatus);
L Mag<String. Qbiect> parentDTOMac = new HashMac<String. Obiect>i):

9. The project should contain the Java packages as shown below:

Figure 5-43 Java Packages

Y5
Y §8src

> i com.ofss.fc.demo.app.party.assembler.contact

> f# com.ofss.fc.demo.app.party.dto.contact
f# com.ofss.fc.demo.app.party.service.contact
# com.ofss.fc.demo.app.party.service.contact.ext
B com.ofss.fc.demo.app.party.service.contact.service.client.proxy
f# com.ofss.fc.demo.app.party.service.contackt.service.json
i# com.ofss.fc.demo.app.party.service.contact.service.json.client
## com.ofss.fc.demo.app.party.service.contact.vo
i com.ofss.fc.demo.appx.party.service.contact
8 com.ofss.fc.demo.appx.party.service.contact.ext
/# com.ofss.fc.demo.appx.party.service.contact.service.client.proxy
# com.ofss.fc.demo.appx.party.service.contact.vo
i# com.ofss.fc.demo.appx.party.service.contact.vo.service.json
f# com.ofss.fc.demo.appx.party.service.contact.vo.service.json.client
f# com.ofss.Fc.demo.domain.party.entity.contact
8 com.ofss.fc.demo.domain.party.entity.contact.repository
£8 com.ofss.fc.demo.domain.party.service.contact

Yy ¥y vuvyvw

¥y ¥ ¥ v¥Y Y VY vyvyyvw

Step 8 Export Project as a JAR

You need to export the Java project containing the domain object, application service and facade layer source
as aJAR.

82 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

To export java project as JAR:

Right click on the project and choose Export.
Choose JAR File in the export options.

1
2
3. Provide an export path and name (com.ofss.fc.demo.party.contactexpiry.jar) for the JAR file.
4

Click Finish.

Figure 5-44 Export Java Project as JAR

JAR File Specification
|

Define which resources should be exported into the JAR.

Select the resources to export:

» & 3= com.ofss.fc.demo.party.contactexpiry
» | 5= com.ofss.fc.enumeration

| » (52 com.ofss.fc.fact

- il Snacbad adnndnnle

© JAR Export

& Export generated class files and resources
Export all output folders For checked projects
Export Java source files and resources

Export refactorings for checked projects.

Select the export destination:

& @) .classpath
& w) .project

JAR file: cefuiSetup/fcr.host.domain/WEB-INF/lib/com.ofss.fc.demo.party.contactexpiry.jar =

Browse... ||

Options:
& Compress the contents of the JAR file
Add directory entries

Overwrite existing files without warning

( ‘?\ <Back

Next > Cancel | Finish

Step 9 Create Hibernate Mapping

You need to create a hibernate mapping to map the database table to the domain object.

Follow these steps:

1. Create ContactExpiry.hbm.xml file in the orm/hibernate/hbm folder of the config project of the host

application.

2. Add the entry for this XML in the orm/hibernate/cfg/party-mapping.cfg.xml hibernate configuration

XML.

3. Add the mapping in ContactExpiry.hbm.xml as shown below.

5 ADF Screen Customizations Using MDS | 83



5.7 Customization Layer Use Cases

Figure 5-45 Create ContactExpiry.hbm.xml

% ContactExpiry hbm.xml {2

<|DOCTYPE hibernat "«f/Hibernate te Mapping " 'k o, P b hibernate

s, fc.enumeration. ContactPreferenceType

Step 10 Configure Host Application Project
You need to configure the Contact Expiry Application Service and Facade Layer in the host application.

To configure, follow these steps:
1. Configure APPX layer as the service layer for Contact Expiry service.
2. Open properties/hostapplicationlayer.properties present in the configuration project and add an entry as

shown below.

Figure 5—-46 Configure hostapplicationlayer.properties

| hostapplicationlayer.properties & . [ ProxyFacadeConfig.properties ] JSSONServiceMap.properties

6 PartyAddressApplicationServiceProxy=APPX
CreditAssessmentApplicationServiceProxy=APPX
PartyNameApplicationServiceProxy=APPX
IdentificationApplicationServiceProxy=APPX

160 EmploymentHistoryApplicationServiceProxy=APPX

1 ContactPointApplicationServiceProxy=APPX

12 ContactExpiryApplicationServiceProxy=APPX

13 PartyDemographicsApplicationServiceProxy=

i PartyAccountRelationshipApplicationServiceProxy=APPX

15 CommentApplicationServiceProxy=APPX

16 BlacklistReportApplicationServiceProxy=APPX

3. Configure APPX layer proxy as the proxy for Contact Expiry service.

4. Open properties/ProxyFacadeConfig.properties present in the configuration project and add an entry as

84 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

shown below.

Figure 5-47 Configure ProxyFacadeConfig.properties

[2 hostapplicationlayer.properties | [5] ProxyFacadeConfig.properties £3 . [ JSONServiceMap.properties
184 PartyOnBoardingApplicationServiceProxy=com.ofss.fc.app.party.service.core.service.client.proxy.Pa
185 IdentificationApplicationServiceProxy=com.ofss.fc.appx.party.service.identity.service.client.pro
186 PartyRelationshipApplicationServiceProxy=com.ofss.fc.app.party.service.relation.service.client.p
187 ContactPreferenceﬁppllcatlonServncePrOxy-cum ofss.fc.app. party service.contact.service. cllent pro

190 roupApplicationServiceProxy=com.ofss.fc.app.party.service.global.service.c 1ent.proxy.6roupnpp 1
191 PartyDemographicsApplicationServiceProxy=com.ofss.fc.appx.party.service.core.service.client.prox

192 DemoPartyDemographicsApplicationServiceProxy=com.ofss.fc.demo.appx.party.service.theftProtection.

Configure the JSON and Facade layer mapping for Contact Expiry service.

Open properties/JSONServiceMap.properties present in the configuration project and add the two
entries as shown below.

Figure 5-48 Configure JSONServiceMap.properties

& hostapplicationlayer.properties \8] ProxyFacadeConfig.properties || JSONServiceMap.properties &2

insaPartiAddrésshpplicéfionserviceSpivorhcadeService = (om.ofss.fc.appx.pé}ty:ser%ice.core.vo.service.jsun.ﬁart
7 PartyNameApplicationServiceSpiVOFacadeService = com.ofss.fc.appx.party.service.identity.vo.service. json.Par
8 IdentificationApplicationServiceSpivVOFacadeService = com.ofss.fc.appx.party.service.identity.vo.service.jsc

0 ContactExpiryApplicationServiceSpiVOFacadeServiceskom.ofss.fc.demo.appx.party.service.contact.vo.service.

1 PartyAccountRelationshipApplicationServiceSpivOFacadeService = com.ofss.fc.appx.party.service.relation.acce
2 CommentApplicationServiceSpivOFacadeService = com.ofss.fc.appx.party.service.core.vo.service.json.CommentAg
3 BlacklistReportApplicationServiceSpiVOFacadeService = com.ofss.fc.appx.party.service.role.customer.vo.servi
i PartyRelationshipApplicationServiceSpiVOFacadeService = com.ofss.fc.appx.party.service.relation.vo.service.
5RelationshipApplicationServiceSpiVOFacadeService = com.ofss.fc.appx.party.service.relation.vo.service. json.
artyOnBoardingApplicationServiceSpiVOFacadeService = com.ofss.fc.appx.party.service.core.vo.service.json.F
37 KYCHistoryApplicationServiceSpiVOFacadeService = com.ofss.fc.appx.party.service.core.vo.service.json.KYCHis

Step 11 Deploy Project
After performing all the above mentioned changes, deploy the project as follows:

1.

4.

Add this project (com.ofss.fc.demo.party.contactexpiry) to the classpath of the branch application
project.

Open the launch configuration of the Tomcat Server. Add this project to the classpath of the server as
well.

Deploy the branch application project on the server and start it.

Client Application Changes.

After creating database table to hold the input data and after creating the related domain objects and service
and facade layers, you can customize the user interface. The customizations to the application have to be
done on the client application. To customize the Ul, follow these steps.

Step 12 Create Model Project
You need to create a model project to hold the required view objects and application module.

To create the model project, follow these steps:

5 ADF Screen Customizations Using MDS | 85



5.7 Customization Layer Use Cases

1. Inthe client application, create a new project of the type ADF Model Project.

Figure 5-49 Create Model Project

™ New Gallery
All Technologies | Current Project Technologies |
This list is filtered according to the current project's selected technoloqgies,
[ &8
Categories: Items: [ ] Show All Descriptions
&-General (3] Generic Project 2
Applications
Ant (5] ADF Model Project
Connections Creates a project that defines a data model for an ADF web
Deployment Descriptors application using ADF Business Components.
Deployment Profiles [G) ADF Swing Project
Diagrams
Java @ ADF ViewController Project
[ﬂ EJE Project
XML
=-Web Tier (B3] Java Application Project
Applet - )
0| Java Project
HTML J :
JSF (3] Project from Existing Source
JSP . ect f
Servlets Project from WAR File
All ltems (7} Project Template v
| Help I oK ] [ Cancel ]

2. Give the project a title (com.ofss.fc.demo.ui.model.party) and set the default package as the same.

86 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-50 Create Model Project - Configure Java Settings

Create ADF Model Project - Step 2 of 2

Configure Java settings

Proi Nam Your new project starts with a default package, a source root directory, and an output
directory

« Project Java Settir
Default Package:

_com.ofss.fc demo.ui.model. party |

|ava Source Path:
/rshanbha/Work/jdev_workspace/View/com.ofs s_fc.demo.ui.model.par‘l; Browse...

Output Directory:
_anbha.‘Workf;dev_workwaceNiewfcom.ofss fc.demo.ui.model party.fcle; Browse...

< b4

Help | | < Back |  Einish |[ Cancel

3. Click on Finish to create the project.

Step 13 Create Application Module

You need to create an application module to contain the information of all the view objects that you need to
create. To create an application module, follow these steps:

1. Right click on the model project and select New.

2. Choose Application Module from the dialog box that opens.

5 ADF Screen Customizations Using MDS | 87



5.7 Customization Layer Use Cases

Figure 5-51 Create Application Module

™ New Gallery

((AllTechnologies | Current Project Technologies |

This list is filtered according to the current project's sel hnologi
@@
Categories: [tems: [] Show All Descriptions
= General [z Business Components from Tables :
Applications
Connections (£l Application Module
Deployment Descriptors Launches the Create Application Module wizard, which allows you to
Deployment Profiles create an application module. Use application modules to assemble
and organize view objects, to handle transactions, and to provide
Diagrams business service methods.
Java
Projects To enable this option, you must select a project in the Application
&-Business Tier Navigator. Before you can finish creating the new application
module, yvou will be prompted to select (or create) a database
bl 2 connection.
Data Controls |
Security Ch association
~All items

[&8 Business Components Diagram

ﬂ Default Data Model Components

N W

Help ok | | Cancel

3. Set the package of the application module to the default package (com.ofss.fc.demo.ui.model.party).

4. Provide a name to the application module (DemoPartyAppModule).

88 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-52 Set Package and Name of Application Module

 Create Application Module - Step 1of 5

MName
Application modules are for assembling, packaging. and deploying the view objects and business services
'-l- Name of an application
1 r -
v Data Model Package: |com.ofss.fc.demo. ui. model.party | Browse...
Name: 'DemoPart}#ppModule i
Display Name: :Dema Party App Module | Q
Extends: | "B:owse...J
Property Set  |<Mone> 'l
<
el ] (Goncel
- - - - r T L T 1 r L T L L T £

Click on Next and let the rest of the options be set to the default options.

You will see a summary screen for the application module. Click on Finish to create the application
module.

5 ADF Screen Customizations Using MDS | 89



5.7 Customization Layer Use Cases

Figure 5-53 Summary of Application Module Created

Create Application Module - Finish

Summary

You have finished the Create Application Module Wizard.

You have selected the following options
|ﬁ Application Module
' lava =2 Name
T @8 Name: com.ofss fc.demo. ui.model party. DemoPartyAppModule
W Summary = [ Data Model
=[] View Object Instances
35 None
=] View Link Instances
3 None
=) Application Modules
&None
=] Java

i Generate AppModule Class: False

When vou click Finish, the application module will be created

Help | < Back J Einish Cancel

Step 14 Create View Object
You need to create a view object for the newly added Expiry Date field. This view object is used on the screen
to display the value of the field as well as to take the input for the field.

To create the view object, follow these steps:

Right click on the Java package com.ofss.fc.demo.ui.model.party and select New View Object.
In the dialog box that opens, provide a name (ContactExpiryVO) for the view object.

Provide a package (com.ofss.fc.demo.ui.model.party.contactexpiry) for the view object.

For the Data Source Type option, select Rows populated programmatically, not based on a query.
Click on Next.

In the Attributes dialog, create a new attribute for Expiry Date field.

Provide a name (ExpiryDate) and type (Date) for the attribute.

® N o g M 0w DD =

For the Updatable option, select Always.

90 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-54 Create View Object

Create View Object - Step 1 of 9

Name
| View objects are for joining. filtering. projecting. and sorting your business data for the specific needs of a
«. Hame given application task
) 'T' Entitv Objects Package: com.ofss.fc.demo.ui.model party. contactexpiry Browse...
L Name: ContactExpirtvVO
! L
Display Name: |Contact Expirt Vo Q
Extends: | || Browse...
Property Set  |<None> 'J

Select the data source type you want to use as the basis for this view object
(C) Updatable access through entity objects

() Read-only access through SQL query

(3) Raws populated programmatically, not based on a query

() Rows populated at design time (Static List)

Cancel

5 ADF Screen Customizations Using MDS | 91



5.7 Customization Layer Use Cases

Figure 5-55 View Attribute

. View Attribute
Attributes

Name: 'Emlry‘t)nte

., Name
’T Type: Date
Attributes

Property Set  |<None>

Attribute Settin

I
T Value Type +) Literal Expression
Value

[ ] Mapped to Column or SQL
[ ] Disgriminator;

[ ] passivate

Help

Help

[ Ear.. J||©Auays

[[] Key Attribute

v| Quepyable

oK

While New

Neyer

5

J Cancel ] ]

< Back | Next > ] |

New...

Finish Cancel

9. Click Next. On the Application Module dialog, browse for the previously created

DemoPartyAppModule.

92 | Oracle Banking Enterprise Originations Ul Extensibility Guide




5.7 Customization Layer Use Cases

10.
11.

12.

Figure 5-56 Application Module

Create View Object - Step 5of 6
Application Module
Select the checkbox to add an instance of this view object to an application module. If the specified
application module does not exist, it will be created
[ [v] Application Module
[ v
i | - = -
| ¢ lava :
Package: com.ofss fc.demo.ul. model pa Browse...
b | ge: | party || Brow
« Application Modul Nameg: DemoPartyAppModule Browse...
.,l, Summany
< >
Help | <Back || Next> I Finish | | Cancel | }

For all other dialogs, keep the default options.

Click Next till you reach the summary screen as shown below.

Click on Finish to create the view object.

5 ADF Screen Customizations Using MDS | 93



5.7 Customization Layer Use Cases

Figure 5-57 Create View Object - Summary

Create View Object - Finish

Summary

You have finished the Create View Object Wizard.

You have selected the following options:
&8 view Object
22 Name
@@ Name: com.ofss.fc.demo.ui. model party. contactexpiry. ContactExpirtvO
v Acolication Module | = [ Attributes
+ Summary @ ExpiryDate
| = ] Java
@8 Generate View Object Class: False
@8 Generate View Row Class: False
=-[3 Application Module
) pemePartyappModule

When vou click Finish, the view object will be created

Help

< Back Finish l Cancel |

Step 15 Create View Controller Project

You need to create a view controller project to contain the Ul elements. This project will also hold the
customizations to the application.

To create the view controller project, follow these steps:

1. Inthe client application, create new project of the type ADF View Controller Project.

2. Give the project a title (com.ofss.fc.demo.ui.view.party) and set the defaults package to the same.

94 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-58 Create View Controller Project

3 New Gallery
| All Technologies ] Current Project Technologies ]
This list is filtered according to the current project's selected technologies.
Categories: Items: ["] Show All Descriptions
& General (3] Generic Project 2
Applications
Ant E] ADF Model Project
Connections
ADF Swing Project
Deployment Descriptors d g !
Deployment Profiles [C] ADF ViewController Project
Diagrams Creates a project that defines view and controller components for
Java an ADF web application using ADF Faces and ADF Task Flows.
' [E] g6 Project
XML
= Web Tier (G Java Application Project
Applet
] Java Project
HTML @ i
ISF (3] Project from Existing Source
—JsP
Sendets (3] Project from WAR File
All tems (7} Project Template !
Help OK I Cancel

3. Click on Finish to finish creating the project.

5 ADF Screen Customizations Using MDS | 95



5.7 Customization Layer Use Cases

Figure 5-59 Name your Project

Create ADF ViewController Project - Step 1 of 2

Name your project

roject Name: |com.ofss.fc.demo.ui.view.pa
. Project Name Eroj [ ui.view. party| ]

w Project |ava Settings

Directory: [.f_workspacef\ﬁew}com.ofss.fc.demo.ui.w‘ew.parw|[ Browse... ]

[ Project Technologies h'Ganamtnd Components = Associated Libraries |

Available: Selected:
ADF Desktop Integration |ADF Page Flow
ADF Library Web Application Supp HTML

ADF Mobile Browser llava
ADF Swing I @ LISF

Ant & | ISP and Serviets
Database (Offline) XML

E)E
||JavaBeans

pap— = - -

|€ [

Technology Description:

ADF Faces adds very high quality components, a dialog framework. as
well as personalization and skinning capabilities. ADF Faces features
include: file upload support. client-side validation, partial rendering of a

w

< ?

!:-i.E|D ] - |_uext> ][ Finish H Cancel ]

e U B T R B T R e S e e w1

e e e

4. Right click on the project and go to Project Properties. In the Libraries and Classpath tab, add the
following:

5. The Jar containing the screen to be customized (com.ofss.fc.ui.view.party.jar).

6. The Jar containing the domain objects and services for Contact Expiry
(com.ofss.fc.demo.party.contactexpiry.jar) as created in host application project.

7. All the required dependent Jars for the above Jars.
8. The Jar containing the customization class (com.ofss.fc.demo.ui.OptionCC.jar).

9. Inthe Dependencies tab, browse for and add the previously created adf model project
(com.ofss.fc.demo.ui.model.party).

10. Inthe ADF View tab, check the Enable Seeded Customizations option to enable this project for
customizations.

96 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5—-60 Libraries and Classpath

@® - Project Source Paths

@~ ADF Model

ADF View

Ant

Business Components

Compiler

Dependencies

Deployment

{ EJE Module
Extension

@ Javadoc
Java EE Application
J5P Tag Libraries
JSP Visual Editor
Resource Bundle
Run/Debug/Profile
Technology Scope

-1 ]

.

Libraries and Classpath

(O Use Qustom Settings
(3) Use Project Settings

|ava SE Version:

Project Properties - fhome/rshanbha/Workfjdev_workspace/View/jcom.ofss.fc.demo.ul.view.partyfcom.ofss

[1.6.0_29 (Defaul)

| ‘ Change... F

Classpath Entries

| Export Description

CUSTOM_UIB
ol TEMPLATE_UB
ol Fc_ue
gl PROXY_LIB
o) ViEW_coMMON_UB
gl TASKFLOW_LIB
ol core_ue

= ADF DVT Faces Databinding MDS Runtime

dependencies

) VIEW_PARTY LB
gl ADDRESS_TASKFLOW_LIB

party screen

| Add Library...
; Add JAR/Directory.. ]

s jar

Bl com.of ss.fc.ui.customtags. jar
Bl <om.ofss fc.ui.components jor
"l DEMO_OPTION_CC
(.} Com. ofss.fc.demo.party. contactexpiry jar
i) ADF Common Web Runtime

Ml ADF Faces Databinding Runtime o

| Help OK ]

customization class jar o
host domain jar

NREEERIREOREREREEE

Cancel

Figure 5-61 Dependencies

Project Properties - fhome/rshanbha/Work/jdev_workspace/View/fcom.ofss.Fe.demo.ul.view.party/com.ofss

X Dependencies

@ Project Source Paths
@ ADF Model
ADF View
@ Ant
& Business Compeonents
@ Compiler
Deployment
EJB Module
Extension
@ Javadec
Java EE Application
JSP Tag Libraries
J5P Visual Editor
Libraries and Classpath
Resource Bundle
Run/Debug/Profile
Technology Scope

Use Custom Settings
(#) Use Project Settings

Dependent Projects and Archives: f x

B com ofss fe demo ui model party jpr

SNCENEIE

L ._

Cancel ]

11. Save the changes by clicking OK and rebuild the project.

Step 16 Create Maintenance State Action Interface

5 ADF Screen Customizations Using MDS | 97



5.7 Customization Layer Use Cases

Create an interface containing the method definition for a maintenance action. This interface is implemented
by the required maintenance state actions classes for the screen to be customized. The state action method
will take the instance of the backing bean as a parameter.

Figure 5-62 Create Maintenance State Action Interface

'@lbemContactPoint.iava x
| @8- 2SR BURAR Nk B

1 package com.ofss.fc.demo.ui.view.party.contactPoint.backing;

& | S public interface IDemoContactPoint {

4

<& public boolean performStateaction{DemoContactPoint demoContactPoint);
6

Step 17 Create State Action Class
You need to create a class which will contain the business logic for the create transaction for this screen. This
class should have following features:

m Implements the previously created state action interface.
m Creates the Contact Point DTO from the users input.
m Creates an instance of the Contact Point service proxy.

m Calls the add method of the service passing the DTO.
Step 18 Create Update State Action Class

You will need to create a class which will contain the business logic for the update transaction for this screen.
This class should have following features:

m Implements the previously created state action interface.
m Creates the Contact Point DTO from the users input.

m Creates an instance of the Contact Point service proxy.

m Calls the update method of the service passing the DTO.

98 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-63 Create Update State Action Class

DemoCreateContactPoint.java *
e JHVSRANBAR Ak SO

W B public class DemoCreateContactPoint implements IDemoContactPoint {
22

private final Logger logger = MultiEntityLogger.getUm quelnstance().getLogger{DesoCreateContactPoint.class.getNane());

a8 public boolean perforaStatesction(DemoContactPoint desoContactPoint) {
// Create the OTO from the screen and call proxy.
boolean status = false:

SessionContext context = SessionContextFactory.getSessionContextFactory().getSessionContextInstance():
context.setServiceCode (Constants. SERVICE (0DE);
TransactionStatus transactionStatus = null:

ContactExparyDTO contactExpDTO = desoContactPoint.createContactExpOTO():
IContactExpiryApplicationServiceProxy contactExpProxy = null;

try {
contactExpProxy = (IContactExpiryApplicationServiceProxy) ProxyFactory.getInstance().getProxy(
DemoContactPoint . CONTACT_EXPIRY PROXY):
if (logger.isLoggable (Level . FINE)) {
logger. log(Level FIBE, “Calling addContactExpiry service®):

}

transactionStatus = contactExpProxy.addContactExpiry(SessionContextFactory.getSessionContext Factory()
.getSessionContextInstance(). contactExpDTO):

status = true;

if (transactionStatus != null &6 (transactionStatus.getErrorCode().equals("0°))) {
MessageHandler, addessage(transactionStatus);

¥
} catch (FatalException e) {
MessageHandler .add¥essage(e)
logger. log{Level . SEVERE, MultiEntityLogger.getiniquelnstance(). foraatMessage(
“"Exception while creating contact point®, e));

CEEEAS020R2E8BYRBRENEEEHNEeRY

52 } catch (ServiceException e) {

s3 MessageHandler.addMessage(e) ;

54 logger.log (Level . SEVERE, MultiEntityLogger.gettniquelnstance(). forsatMessage(

55 "Service exception while creating contact point®, e)):

56 } catch (Throwable e} {

57 } MessageHandler . sdErrorMessage( Internal error occured. Please contact system adeinistrator®):
58

59 return status:

)
il

5 ADF Screen Customizations Using MDS | 99



5.7 Customization Layer Use Cases

Figure 5—-64 Create Update State Action Class

2] DemoUpdateContactPoint.java *
- JHRS K DIVBEAQT AR 81

4 =public ¢lass DemoUpdateContactPoint implemsents IDemoContactPoint {

private final Logger logger = MultiEntityLogger.gettniguelnstance().getLogger (DemoUpdateContactPoint.class. getName()):

S public boolean perfnrlsnwut:ontmlnmnta:twmt deloContar.tPuntJ {
ne sCreen and Ca )

Iwuler)n statuﬁ = fals s€;

SessionContext context = SessionContextFactory.getSessionContextFactory().getSessionContextInstance():
context.setServiceCode (Constants. SERVICE (ODE):
TransactionStatus transactionStatus = null;

ContactExpiry0TO contactExpOTO = demoContactPoint.createContactExpOTO():
IContactExpiryApplicationServiceProxy contactExpProxy = null;

try {
contactExpProxy = (IContactExpiryApplicationServiceProxy) ProxyFactory.getInstance().qetProxy(
DemoContactPoint. CONTACT EXPIRY PROXY):
if (Logger.isLoggable(Level.FINE)) {
logger. log(Level .FINE, “Calling addContactExpiry service®);
}

transactionStatus = contactExpProxy.updateContactExpiry (SessionContextFactory.getSessionContextFactory()
JgetSessionContextInstance(), contactExpOTD);

status = true;

if (transactionStatus != null &6 (transactionStatus.getErrorCode().equals(*0"}}) {
MessageHandler add¥essage(transactionStatus);

SHGEORCEBBUYERRBNRBEENERRINEES

}
} catch (FatalException e) {

47 MessageHandler . addMessage(e)

48 logger. log{Level.SEVERE, MultiEntitylogger.getlniquelnstance().formatMessage(
49 "Exception while updating contact point™, e)):

50 } catch {ServiceException e) {

51 MessaqeHandler . addessagele):

52 logger. log{Level.SEVERE, MultiEntitylLogger.gettniquelnstance().formatMessage(
53 "Service exception while updating contact point™, e));

54 } catch (Throwable e} {

35 MessageHandler.acdErrorMessage(” Internal error occured. Please contact system adainistrator®);
S5 }

57 return status:

Step 19 Create Backing Bean
You need to create a backing bean class for the screen to be customized. This class should have the
following features:

Should implement the interface ICoreMaintenance.

Private members for the to be added Ul Components in customization and public accessors for the
same.

Private member for the backing bean of the original backing bean of the screen (ContactPoint) which is
initialized in the constructor of this class.

Private member for the parent Ul Component of the newly added Ul components and public accessors
which returns the corresponding component of the backing bean.

Private member for the newly added view object (ContactExpiryVVO) and the current view objects
present on the screen.

100 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-65 DemoContactPoint.java displays the View Objects

3DemoContactPoint.java *
- TSR DORZAA Aweh B

45| & public class DemoContactPoint implesents ICoreMaintenance {

&

a7 private static final String VO_CONTACT EXP = “ContactExpiryVOlIterator®;
private static final String EXPIRY DATE = “ExpiryDate”:

protected static final String CONTACT_EXPIRY PROXY = “ContactExpiryipplicationServiceProxy”:

private UIXGroup formData:
private ContactPoint contactPoint:
private View(bject comtactPoint¥0 = IteratorHandler.getViewObject (Constants, PAGE_DEF, Constants.WO_CONTACT POINT);

ContactPointBusinessFules contactPointBR = new ContactPointBusinessPules():

private RichPanelLabelindMessage plamls:

private DateComponent expiryDate;

private ViewObject contactExpv0 = IteratorHandler, getView0bject (Constants,PAGE_DEF, VO_CONTACT EXP);

private transient Logger logger - MultiEntityLogger . getUniquelnstance() . getloger (DemoContactPoint, <lass, qetNane());

= public DemoContactPoint() {

e b

|_contactPoint = (ContactPoint)ELHandler.get ("#{ContactPoint}”):

=] public woid setForaData(UINGroup foramData) {
this, forsData = foraData;

& rpubtictidGroup—getForsbata{}—
this, forsbata - comtactPoint getForsData():
refurn foreData:

SHAEINEEBESRGRONEBEUERNUNELSS

clear() method which handles the user action Clear.

save() method which handles the maintenance state actions Create and Update.

Depending on the current state action, the save() method should instantiate either
DemoCreateContactPoint or DemoU pdateContactPoint and perform the corresponding state action
methods.

5 ADF Screen Customizations Using MDS | 101



5.7 Customization Layer Use Cases

Figure 5-66 DemoCreateContactPoint / DemoUpdate ContactPoint

| public boolean save(} {
boolean status = false:
boolean flag = contactPoint.validateAllInputs();
if (flag) {
IDemoContactPoint demoContactPointAction = null;
if (MaintenanceHelper.getCurrentState().equals(MaintenanceHelper.(REATE)) {
demoContactPointAction = new DemoCreateContactPoint():

} else if (MaintenanceHelper.getCurrentState().equals (MaintenanceHelper UPDATE)) {
demoContactPointaction = new DemoUpdateContactPoint();:

status = demoContactPointAction.perforaStateAction(this);
}

return status;

| public boolean clear() {
if{contactPoint,clear(}) {
contactExpy0.clearCache():

this.getExpiryDate (). reset():
this.getExpiryDate().setReadOnly (true);

initializeContactExpVo();
return true;

}

return false;

= A public method to create the Contact Expiry DTO from the user's input on the screen.

Figure 5—-67 Create Contact Expiry DTO

public ContactExpiry0TO createContactExpDTO() {
Date expiryDate = null;
if (contactExp¥0.getCurrentRow().getAttribute (EXPIRY DATE) '= null) {
expiryDate = new Date{{{oracle.jbo.domain.Date)contactExpV0.getCurrentRow(}.getAttribute (EXPIRY DATE)) . datevalue()):

ContactPointOTO contactPointDTO = contactPoint.createContactPointDTO();
ContactExpiryDTO contactExpDTO = mew ContactExplryDTo();

contactExpDTO. setContactPolntOTO(contactPolntOTO);

contactExpDTO. setExpiryDate (expiryDate):

return contactExpOTO;

= A value change event handler for the Expiry Date Ul Component.

102 | Oracle Banking Enterprise Originations Ul Extensibility Guide




5.7 Customization Layer Use Cases

Figure 5-68 Value Change Event Handler for the Expiry Date Ul Component

public void onExpiryDatechange (ValueChangeEvent valueChangeEvent] {
if (logger.isLoggable (Level.FINE)) {
logger. log(Level . FINE,
MultiEntityLogger.getUniquelnstance(). forsatMessage("Entering onExpiryDateChange method. "))
1
Date processdate =

new com.ofss. fc.datatype.Date(((oracle, jbo.domain.Date)ELHandler. ot (" #{pageFlowScope . defaultyalues.postingDate}”)
if {valueChangeEvent.getNewValue() 1= null) {
Date expDate =
new Date(((oracle.)jbo.domain.Date)valueChangeEvent. getNewValue()).datevalue()):
TODD: fix the process date error
if (lexpDate.1sBefore(processdate)) {
MessageHandler. addErrorMessage(getExpiryDate() .getClientId(),
"Expiry date should not be less than the current date”,
null);
contactExpV0.getCurrentRow (). setittribute (EXPIRY DATE,

null);

this.getExpiryDate (). reset():
AdfFacesContext.getCurrentInstance()  addPartialTarget (expiryDate):

H
} else if (valveChangeEvent.getNewvalue() == null) {
MessageHandler.addErrorMessage (getExpiryDate (). getClientId(),
“Select Expiry Date”, null);
}

m Value change event handlers for the existing Ul Components on change of which the screen data is to
be fetched.

Figure 5-69 Value Change Event Handlers for Existing Ul Components

public void onContactPreferenceChange (ValueChangeEvent valueChangeEvent) {
if (MaintenanceHelper.getCurrentState().equals(MaintenanceBelper.READ)) {
clearContactExpiryDetails():
initializeContactExpvo();
if (contactPointV0.getCurrentRowv().getAttribute (Constants. PARTYID) != null
£5 contactPointV0,.getCurrentRow() getAttribute(Constants, CONTACT POINT TYPE) '= null) {
contactPointVo. getCurrentRov (). setAttribute (Constants. CONTALT PREF_TYPE,

alueChangeEvent . getNewValue (). toString()):
ContactExpiryDTO contactExpDTO = fetchContactExp():
if(contactExpDTO l= null) {

setContactExpDetails (contactExpDTO);

}

contactPoint .onContactPreferencechange {valueChangeEvent):

public void onContactPointTypeChange (ValueChangeEvent valueChangeEvent) {
if (MaintemanceHelper.getCurrentState().equals(MaintenanceHelper,READ)

Il MaintenanceHelper.getCurrentState().equals(MaintenanceHelper.(REATE)) {
clearContactExpiryDetalls():

if (MaintenanceHelper.getCurrentState().equals(MaintenanceHelper READ)) {
initializeContactExpvo():

}

contactPoint .onContactPointTypechange (valuechangeEvent):
}

Method containing the business logic to fetch screen data using Contact Expiry proxy service.

5 ADF Screen Customizations Using MDS | 103



5.7 Customization Layer Use Cases

Figure 5-70 Method to fetch Screen Data using Contact Expiry Proxy Service

private ContactExpiryDTO fetchContactExp() {
ContactPointType cpType = null;
if (contactPointV0.getCurrentRow() . getAttribute (Constants (ONTACT POINT JYPE) != null) {
cpType = (ContactPointType)EnumerationHelper, getinstance(). froavalue (ContactPointType.class,
(String}contactPoint¥0.getCurrentRow (). getAttribute (Constants. CONTACT POTRT _TYPE));

ContactPreferenceType contactPrefType = null;
if (contactPointV0.getCurrentRow().getAttribute (Constants. CONTACT PREF_TYPE) 1= null) {
contactPrefType = (ContactPreferenceType)EnumerationHelper.getInstance(). fromValue(ContactPreferenceType.class,

(String)contactPoint¥0.getCurrentRow (). getAttribute (Constants. CONTACT PREF _TYPE)):
}

String partyld = (String)contactPointV0.getCurrentRow() . getAttribute (Constants. PARTYID);
ContactExpiryDTO contactExpDTO = new ContactExpiryDTO():

ContactPolntOTO contactPointDTO = new ContactPointDTO():
contactPolntOTO. setContactPoint (cpType):
contactPointOTO. setPreferenceType (contactPrefType):
contactPointDTO. setPartyld(partyId):

contactExpDTO, setContactPolntDTO(contactPointDTO);

SessionContext context = SessionContextFactory.getSessionContextfactory() . getSessionContextInstance():
context.setServiceCode (Constants, SERVICE_(0DF);

IContactExpiryApplicationServiceProxy contactExpProxy = null;
ContactExpiryInquiryResponse response = null:

try {
contactExpProxy = (IContactExpiryApplicationServiceProxy) ProxyFactory.getInstance().getProxy (CONTACT EXPIRY PROXY):
if (logger.isloggable(Level FINE)) {
logger. log(Level FI¥E, “Calling fetchContactExp service');
}

response = contactExpProxy.fetchContactExpiry(SessionContextFactory.getSessionContextFractory ()
.getSessionContextInstance(), contactExpOTO):
if (response != null &&
(response.getStatus().getErrorCode (). equals(*0")]) {
contactExpOTO = response. getContactExplryOTO():

Y cateh (FatalFeeantion e)

Step 20 Create Managed Bean
You need to register the DemoContactPoint backing bean as a managed bean with a backing bean scope.

1. Open the project's adfc-config.xml which is present in the WEB-INF folder.

2. Inthe Managed Beans tab, add the binding bean class as a managed bean with backing bean scope as
follows:

Figure 5-71 Create Managed Bean

{5l DemoContactPoint java * ([ Jadfe-configaeml = | (

General

Description @ Managed Beans & R

Activities

Control Flows Hama * 4 Scope *

Managed Beans DemaoContactPaint com. ofss.fc demo. ul view. party. contactPoint backing DemaCanta backingBean ’

Metadata Resources -IManaged Properties: DemoContactPoint + X
Name ® . Class Value |

Step 21 Create Event Consumer Class

You need to create an event consumer class to consume the Party |d Change event. When the user inputs a
party id on the screen, the business logic in this event consumer class will be executed automatically.

104 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

Figure 5-72 Create Event Customer Class

2| DemoPartyldChangeEventConsumer.java :.]
- SHBLSKAVDEAR Al =
1 package com.ofss. fc.demo.ul. view. party. contactPoint. consumer;
2
3 ®import ...
13
14 2 public class DemoPartyIdChangeEventConsuser {
15
16 private Logger Logger = MultiEntitylLogger.gettni quelnstance() . qetLogger{DesoPartyldChangeEventConsumer. class. getNase()):
17
18 & public DesoPartyldChangeEventConsuser() {
19 super():
20 ¥
b |
2 a public void partyldChangeEvent (Object object) {
brcl if (logger.isLoggable(Level . FINE}) {
24 logger. log{Level.FIKE,
F- "Entering DemoPartyIdChangeEventConsumer.partyldChangeEvent™):
2% }
7 PartyDetailsHelper partyDetailsHelper = (PartyDetailsHelper)object:
28 String partyld = partyDetailsHelper.getPartyId():
) Viewlh)ect contactPoantV0 =
30 IteratorHandler. getViewdbject (Constants. PAGE_DEF,
A Constants. W0 (OSTACT POINT):
32 contactPointV0. getCurrentRow() . setAttribute (Constants. PARTYID,
el partyId);
24 partyDetailsHelper.setReadOnlyPartyId(true);
B
36 if (logger.isLoggable(Level.FISE}) {
37 logger. log(Level FINE,
=] *Exiting DemoPartyldChangeEventConsumer.partyldChangeEvent®);
2] }
w3 .

Step 22 Create Data Control
For the event consumer class's method to be exposed as an event handler, you need to create a data control
for this class.

1. Inthe Application Navigator, right click on the event consumer Java file and create data control.

On creation of data control, an XML file is generated for the class and a DataControls.dcx file is
generated containing the information about the data controls present in the project. You will be able to
see the event consumer data control in the Data Controls tab.

5 ADF Screen Customizations Using MDS | 105



5.7 Customization Layer Use Cases

Figure 5-73 Create Data Control

=-gi consumer

&-gd Web Content
=-51 WEBHNF
E adfc-config. xml
B3 faces-config.xml
ﬁ? trinidad-config.xmil
[5':L| web.xml
@-gd Page Flows
=53l com.ofss fc.ui.view [10.180.22.95)
@5 Application Sources
@ o Resources
& Web Content
B com
£l css
°:| images
b upload
;,-j WebHelp
51 WEB-INF
;:] Page Flows
&P AboutUs.jsff 215810
&P Default jsff 215061
&) error.html 215061
B login.htm| 227634

[ e e L e 1

12108 IR SR 2

&l DemoPartyldChangeEventConsumer. jay

| Sy private LDateComponent €
S8 nrivate ViewOhiect cant
Qpen
Exclude Project Content
x Delete
Find Usages... Cerle Ale-U
Make Crrl+ ShifeF9
Rebuild Alt+ Shift-F9
B Run Crrl-F11
B Debug
Refactor b
I.?; Reformat Crrls Alt-L
Organjze Imports Ctrl+ Alt-0
+ 2dd
Yersioning »
Compare With »
Replace With »

Create Service Interface...

Create Web Service...

P, Create Data Control

2. You should now restart JDeveloper in the Customization Developer Role to edit the customizations.
Ensure that the appropriate Customization Context is selected.

Step 23 Add Ul Components to Screen
Browse and locate the JSFF for the screen to be customized

(com.ofss.fc.ui.view.party.contactPoint.contactPoint.jsff) inside the JAR (com.ofss.fc.ui.view.party.jar).

Open the JSFF and do the required changes as follows:

1. Drag and drop the Panel Label & Message and Date Ul components at the required position on the

screen.

2. Foreach component, set the required attributes using the Property Inspector panel of JDeveloper.

Modify the containing Panel's width and number of columns attributes as required.

For each component, add the binding to the DemoContactPoint backing bean's corresponding

members.

5. Add the value change event binding for the Expiry Date Ul component to the backing bean's

corresponding method.

6. Change the value change event binding for the existing Ul component on change of which the screen

data is fetched.

7. Change the backing bean attribute of the screen to the previously created DemoContactPoint backing

bean.

8. Save the changes. You will notice that JDeveloper has created a customization XML in the ADF
Library Customizations folder to save the differences between the base JSFF and the customized
JSFF. The generated contactPoint.jsff.xml should look similar to as shown below.

106 | Oracle Banking Enterprise Originations Ul Extensibility Guide




5.7 Customization Layer Use Cases

Figure 5-74 Generated contactPoint.jsff.xml

] cantactpoint jsffumd *

.' ‘A
=pdscustondzat ion version="11.1.1.41.82"
«pds:insert parent="fors0ata® after="sac
<af:panel] Label AndMessage xalns:sf="http://ual
<fedate xmlng: fo="fcom/of 53/ ¢ /ul fcomp

</l panel Label Andressage=
</mds:insert>
=adszpodify ¢lesents"p
=mds: attribwte nase=
10 «=/mds:eodify-
11 =pds:eodify ¢lesent="p
12 «mds:attribute na
13 «<mds: attribute names
14 «pds; attribute o
15  </mds:nodify-
16  <mds:wodify elewen
17 «mds; attribute na
18 «</mds:sadify-
pi-3 «nds:nodi fy olssent="socContactPref >
.1} amds: attribute nase="valueChangelistensr® wvalue="s{lesoContactPoint . onlontactPreferencechange]}” /»
A «/edscsodify>
2 < /eds:custond zat ion=

CE - ALY N

tl{nalns (fehttp: //java.sun. cons st /core) ) /1 attribute |anamesBack1ngBeantla
lue® value="com.ofss, {c. demo . ul view. party. contas tPoint. backing. DesoCont

oluans® value="2"/>
dwidth® value="5608" />
belWidth® value="404" />

ontactPoantType™»
angelistensr” value="s{DesoContactPoint. cnlontactPoantTypeChange] ™ />

value="s{bindings . ExpiryDate. nputvalue}® sutoSubmite"true* readOnlys"true* postvalueChange="s{DesolontactPoint. onExpiryDatethange}* />

Step 24 Add View Object Binding to Page Definition

You need to add the view object binding for the previously created ContactExpiryVO view object to the page

definition of the screen to be customized.

1. Browse and locate the page definition for the screen to be customized
(com.ofss.fc.ui.view.party.contactPoint.pageDef.ContactPointPageDef.xml) and open it.

2. Add an attributeValues binding as shown below.

Figure 5-75 Add an attributeValues binding

Select the category of components from which you would like to find an item:

lGenen’c Bindings vJ

Select the item to be created:

IE action e
&3 button

€9 eventBinding

E graph

[ list

@ listOfvalues

=] methodAction v

Description:

Supports binding to one (or more) attributes.

T

3. For Data Source option, locate the previously created ContactExpiryVO view object present in the

DemoPartyAppModule.

4. For Attribute option, choose the ExpiryDate attribute present in the view object.

5 ADF Screen Customizations Using MDS | 107



5.7 Customization Layer Use Cases

Figure 5-76 Create Attribute Binding

© Create Attribute Binding

Data Source: [E DemoPartyAppModuleDataControl. ContactExpiry... 'J @

Attribute: ExpiryDate ¥

Help l oK J [ Cancel

Step 25 Add Method Action Binding to Page Definition

You need to add the method action binding for the previously created DemoPartyldEventChangeConsumer
event consumer class to the page definition of the screen to be customized.

1. Add a methodAction binding as shown below.

Figure 5-77 Add a methodAction binding

™ Insert Item

Select the category of components from which you would like to find an item:

\Generic Bindings ']

Select the jtem to be created:

(] graph "
& list

& listOfValues

E2 methodAction

E navigationlist

:ﬁ table

ﬂ tree

) treetable v
Description:

'Method binding for the control. 1

L Hep | | oK || cancel

2. Forthe Data Collection option, locate the previously created DemoPartyldChangeEventConsumer
data control.

108 | Oracle Banking Enterprise Originations Ul Extensibility Guide




5.7 Customization Layer Use Cases

Figure 5-78 Create Action Binding

 Create Action Binding

Select a data collection and the action you want yvour control to initiate. The control initiates the action on the data objects of
the selected collection

Data Collection
'm- 3 DemoPartyAppModuleDataControl ~|

Y0 mo? artyidChangetventconsumer
+ _.d DepositBasicDetailsEventProducer
@) DirectRolePartyDetailsConsumer

& .d DocumentCategoryEventConsumer
&

t:'

.'.6 DocumentDetailsEventProducer
) DocumentExecutionEventProducer

L - - - -

Select an Iterator: | -

QOperation: |partytd(hanquventhbJecn '_J

Parameters

Name Type value QOption
obiect " ava lang Object I 2

—T— —r— T

Step 26 Edit Event Map of Page Definition
You need to map the Event Producer for the party id change event to the previously created Event Consumer.

1. Inthe Structure panel of JDeveloper, right click on the page definition and select Edit Event Map.

2. Inthe Event Map Editor dialog that opens, edit the mapping for the party id change event. Select the
previously created Event Consumer's method.

5 ADF Screen Customizations Using MDS | 109



5.7 Customization Layer Use Cases

Figure 5-79 Select the Event Consumer Method

™ Modify EventMap Entry

Select an appropriate Producer, Event Name and Consumer.

Producer: lcontact?omt?schef partyDetailsTaskFlowDefnl partyDetailsPageDef raiseEvent VJ
Event Name [partyldonChangeEvent =
Consumer. contactPointPageDef partyldChangeEventl ‘J
Consumer Params 4 %

Param Name Param Value

paylLoad #{paylLoad}

[concsl_]

3. Save the changes. You will notice that JDeveloper has created a customization XML in the ADF
Library Customizations folder to save the differences between the base JSFF and the customized
JSFF. The generated contactPoint.jsff.xml should look similar to as shown below.

Figure 5-80 Generated contactPoint.jsff.xml

- JcontactPeintsageDef wmlxml
| - 5
1 =nds:cestonization
2 «mds: fase rt posations" t
3 citerator
) 1d=
3 </pdscinsert-
&  opdupieert par last®
7 wattribntevalees It
8 <ATT il
© <Ités Vi lue="Expirylate” /s
0 /UL rH
n «/attribateValuess
12 «/mds:inserts
13 <mds:inaert par
14 <t hod it fon
13 wodel”
148
i
1%
20 asduzisernt
i it Rap
= =rwent nane
b= preducers re wt  raiseEve
Fo O
=]
» <paraseter nase="paylosd” value-"s{paylosd]" />
- =/paraseterss
F. ] «/EOmnumnr >
- < rprodeces
i} </t -
i vt Bp
£ mh : fwarrt =
33 </mis:custonlzat lon>

Step 27 Deploy Customization Project
After finishing the customization changes, exit the Customization Developer Role and start JDeveloper in
Default Role. Deploy the view controller project as an ADF Library Jar (com.ofss.fc.demo.ui.view.party.jar).

Go to Project Properties of the main application project and in the Libraries and Classpath, add the following:

110 | Oracle Banking Enterprise Originations Ul Extensibility Guide



5.7 Customization Layer Use Cases

View controller project Jar (com.ofss.fc.demo.ui.view.party.jar)
Host domain Jar (com.ofss.fc.demo.party.contactexpiry.jar)
Customization Class Jar (com.ofss.fc.demo.ui.OptionCC.jar)

All dependency libraries and Jars for the project.

a M 0N =

Start the application and navigate to Party — Contact Information — Contact Point screen. Input a
party id on the screen and perform the read, create and update actions on Contact Point. You need to
input data and fetch value for the newly added Expiry Date field.

Figure 5-81 PI041 - Contact Point Screen

PEG4L

Contact Polnt

LA Ty [ Conted (22 Prime
Paity Datails

O 000005295
------- ORITHI-U Dank Operations DR

¢ Docel truatee » Treatee

ass FOREIGN PUBLIC BODY
Trpe LEG

= Address Dutaily

Contact Point Datails

f Type Mobie 18] Frefeoence Tyge Home

s [ Communication r Cupery Date | 3342002 Y
et

Preferred Contact

Marketing Consent

Teleghane Detadly
o | AIETITED

Timing Preforences

5.7.3 Override the product managedBean

Screen customizations could be used to handle a product code which does not serve the necessary
functionality and needs to be re-written.

5 ADF Screen Customizations Using MDS | 111



112 | Oracle Banking Enterprise Originations Ul Extensibility Guide



6 Human Task Screen Extension

6.1 Introduction

Human task screen uses intermnally ADF taskflows except the primary worklist actions. Human screen
extensions work similar to ADF screen extensions, where the backing bean and controller classes of human
task have the provision for extension, similar to the Ul extension as explained in Section 4.1 Ul Extension
Interface, Section 4.2 Default Ul Extension, Section 4.3 Ul Extension Executor, and Section 4.4 Extension
Configuration. From the perspective of customization, the recommendation is to do customization on the
taskflows used internally. For CSS customization, see the below the details.

6.2 Custom CSS Skin

If ADF skin is already available and you just want to change the skin family reference in “trinidad-config.xml”,
directly apply the Section 6.2.2 Apply New Skin . If you want to create a new ADF skin and merge with the
existing skin families to “trinidad-skins.xml”, start from Section 6.2.1 Create New ADF Skin .

6.2.1 Create New ADF Skin

To create a new ADF skin and package it as library to refer to new skin families files, perform the following
steps:

1. Create ADF skin project and skin families as given in https://docs.oracle.com/cd/E16162_
01/user.1112/e17456/adfsg_project.htm#ADFSG490:

Figure 6—1 Sample trinidad-skins.xml

<7xml version="1.0" encoding="windows-125%2"7>
<skins xmins="http:}/mylaces.apache.orgftrinidad/skin"">
<skin»
Cid>NEWOBPALTASEIN. desktop<fid>
{family *NEWOBPALTASKINamily>
{extendsialta-wvl.desktop<fextends>
<render-kit-id>org.apache.myfaces.trinidad.desktop <frender-kit-id>»
{shyle-sheet-name >adffskinsfobp_alta-extendfobp_alta_extend.css{fstyle-sheet-name>
<lakin
<lsking¥

2. Package the above project as given in https://docs.oracle.com/cd/E16162_
01/user.1112/e17456/adfsg_apply.htm#ADFSG404.

After deployment, the package structure should be as shown in the following screenshot:

6 Human Task Screen Extension | 113


https://docs.oracle.com/cd/E16162_01/user.1112/e17456/adfsg_project.htm#ADFSG490
https://docs.oracle.com/cd/E16162_01/user.1112/e17456/adfsg_project.htm#ADFSG490
https://docs.oracle.com/cd/E16162_01/user.1112/e17456/adfsg_apply.htm#ADFSG404
https://docs.oracle.com/cd/E16162_01/user.1112/e17456/adfsg_apply.htm#ADFSG404

6.2 Custom CSS Skin

Figure 6—2 Package Structure

ADFLibraryJARRootDirectory

+——META-IHF

| I MRHIFEST .MF

| | oracle.adf.common.services .  ResourceService. sva
| I trinidad-skins.xml

| I

| +———adf

| I \——-szkins

| I \=—=skini

| | \———images

| I \=---af column

| | 2o0rt_des selected.png
| I

| \===askins

| h———skinl

| skinl.css=

|
+-—-resources

| akinBundle.properties

|
\===WEB-INF
faces-config.xml

3. Deploy or add the deployed jar to obp ui library references.

4. Reference implementation can be provided on request.

6.2.2 Apply New Skin

m Option #1: The skin id can be configured with the help of property ‘default.humantask.skinfamily’ in
seed data available as part of FLX_FW_CONFIG_ALL_B.

Figure 6—3 Sample Data

INSERT
INTO flx_fw_config_all b
{
PROP_ID, CATEGORY_ID, PROP_VALUE, FACTORY_SHIFPPED_FLAG, FROP_COMMENIS,
SUMMARY TEXT, CREATED BY, CREATION DRTE, LAST UFDATED BY, LAST UFDATED DATE,
OBJECT_STATUS_FLAG, OBJECT VERSION_NUMBER
)
VALUES
{
'default.humantask.skinfamily', 'UiConfig', 'WEWOBBALTASKIN', 'Y,
NOLL, 'HEWOBPALTASKIN UiConfig®', 'ofssuser', to_timescamp('25-JUL-17 02.13.0€.000000000 BM', *DD-MON-RR HH.MI.SSHFF AM'),
'ofasuser', to _timestamp('25-JUL-17 02.13.0€.000000000 PM",'DD-MON-RR HH.MI.SSXFF RM'), 'A', 1
1:

m Option #2: Over and above the above the option 1, the extension can be implemented for

114 | Oracle Banking Enterprise Originations Ul Extensibility Guide



6.2 Custom CSS Skin

“postCustomBranding” operation of CommonTaskFormPagePhaseListenerlmpl [extension class:
com.ofss.fc.workflow.ui.common.ext.|ICommonTaskFormPagePhaseListenerimplUIExt]

Figure 6—4 Sample Implementation

FacesContext fc = FaceaContext.getCurrentInstance():

ELContext elc = fc.getELContext():

String skinld = “NEH‘-JBPMIRSKIN":I

ExpressionFactory exprFact = fc.getlpplication() .getExpressionFactory():
ValueExpression ve = exprFact.createValueExpression(elc, 55 SKIN FAMILY, Object.class):
ve.setValue (elc, skinId):

ELHandler.set (IS CUSTOM BRANDING, "false"):

6 Human Task Screen Extension | 115



116 | Oracle Banking Enterprise Originations Ul Extensibility Guide



7 Receipt Printing

OBP has many transaction screens in different modules where it is desired to print the receipt with different
details about the transaction. This functionality provides the print receipt button on the top right corner of the
screen which gets enabled on the completion of the transaction and can be used for printing of receipt of the
transaction details.

For example, if the customer is funding his term deposit account, the print receipt option will print the receipt
with the details like Payin Amount, Deposit Term etc at the end of the transaction. The steps to configure this
option in the OBP application are given in the following section.

7.1 Prerequisite

Following are the prerequisites for receipt printing.

7.1.1 Identify Node Element for Attributes in Print Receipt Template

The list of all the elements that are present in the particular task code screen and need to be displayed in the
printed receipt can be identified with the help of the VO object utility. This utility helps in identifying all the
node elements which are available on the screen and can be used in the print receipt template. This utility
VOObjectUtility can be used to generate the data required for the functionality to work.

Once the utility is imported in the workspace, the input.properties file needs to be updated with the location of
module's Ul, location of task flow directory, location of config directory and the output directory where you
want the output of the utility.

Figure 7—1 Input Property Files

File Edit MNavigate Search Project Run Window Help

Wi S Ry Oyl EN e g E G rey @O Pyl R E 1
Yo §l w0 & v q 1B
{25 Project Explorer 8 = 0 [l input.properties 2 = g
B & - # The path of the model project for which the VO attributes need to be listed.
= = ProjectPath=/home/0BP WS/ui/View/com.ofss.fc.ui.model.td
¥ a VOAEtributes [Erunk/core/util # The Path of the taskflows directory under which all the taskflows project exists.
P src TaskFlowsDir=/home/0BP WS/ui/TaskFlows/
3 . - # The Path of the config directory.
* =l JRE System Library [JavasE- ConfigDir=/home/0BP WS/config
» (s xalan.jar - CUSTOM_LIB/tld - # The directory under which the result g¢sv file needs to be generated.

» @ xmlparserv2.jar - CUSTOM L OutputDir=/home/csv_output
P (@3 commons-io-1.4.jar - CUSTO
» G build

[@input.properties 246359 5/

B Readme.txt 238037 8/8/12!

In the build path of the utility, three libraries (commons-io, xalan and xmlparserv2) need to be added as they
are required for execution of the utility.

7 Receipt Printing | 117



7.1 Prerequisite

Figure 7-2 Build Path of Utility

@& o Properties for VOAttributes
@| Java Build Path - e
» Resource - S
Builders ##source |SProjects | BiLibraries| *;Order and Export
Java Build Path JARs and class folders on the build path:
» Java Code Style > & CUSTOM_LIB/commons-io-1.4.jar - fhome/vishal/ Add JARs...
» Java Compiler » @ CUSTOM_LIB/tld/xalan.jar - fhome/vishal/eclipse —
: : . : Add External JARs...
» Java Editor > @ CUSTOM_LIB/tld/xmlparserv2.jar-/homefvishaly - ——
Javadoc Location » = JRE System Library [JavaSE-1.6] Add Variable...
PMI_) Add Library... |
Project Facets
Project References Add Class_Folder...
emjDegSas g Add External Class Folder... |
Server _
Subversion Edit...
» Task Repository
Task Tags Remove
» Vvalidation
igrat R File..
WikiText Migrate JAR File
® cancel | [ERNOKI

Then the main method of the VOAttributesFinder.java class in the utility is executed.

118 | Oracle Banking Enterprise Originations Ul Extensibility Guide



7.1 Prerequisite

Figure 7-3 Utility Execution

File Edit

—
G T

T

{5 Project Explorer 8

Source Refactor

v o

B I s I AR Y

¥ 3 VOALtributes [trunk/core/util

¥ @ src
¥ & com.ofss.fe.voattribute
> [J} VoAttributesFinder.java
¥ & com.ofss.fc.voattribute.xi
> [J} XMLUtil java 238037 8/8
* =i JRE System Library [JavaSE-
» s xalan.jar - CUSTOM_LIB/tld -
» s xmlparserv2.jar - CUSTOM_L

> (@ commons-io-1.4.jar - CUSTO private static final String
- private static final String

" &PU'ld s private static final String
[Einput.properties 246359 5/ private static final String

[ Readme.txt 238037 8/8/12 !

% import java.io.File;[]

private
private
private
private

Properties prop;

init();

getAllVoAttributes();

Navigate Search Project Run Window Help
be [0 W & g R EIGYE Y

> £5 5
e S [T voAttributesFinder.java R
B & - package com.ofss.fc.voattribute;
=

public class VoAttributesFinder {

String outputFile;
StringBuilder voAttributes =
Map<String, String> taskCodeMap = new HashMap<String, String=();
private Map<String, String> taskFlowVisitedMap =]
private Map<String, String> taskFlowVoAttributes =[]
LINE SEPARATOR =[]
FILE_SEPARATOR =]
STARTING_STR = "<?";
ENDING STR = "7>";

public VoAttributesFinder() {

* Represents the properties object to read the properties file.[]

new StringBuilder();

public static void main(String[] args) throws IOException {

new VoAttributesFinder().getVoAttributes();

public void getVoAttributes() throws IOException {

private void getAllVoAttributes() throws IOException {

String projectPath = prop.getProperty("ProjectPath”);
voAttributes.append("Task Code").append(",").append("View Object").append(”,")
.append("Attribute Name").append(",").append("Attribute Type")
.append(",").append("RTF Node").append(LINE SEPARATOR) ;
System.out.println("Generating . g
populateTaskFlowVoAttributes();

On the execution of the utility, the Excel file is generated. The task codes can be filtered in the Excel file for
viewing different RTF node value of different attributes available on the particular screen.

Figure 7—4 Excel Generation

A

L [Task Code [-7]view oObject

15 TDOO2
16 TDOO2
17 TDOOZ2
13 TDOO2
19 TDOO2
20 TDOO2
21 TDOO2
22 TDOO2
23 TD002
24 TDOO2
25 TD0O2
26 TD0OO2

Task Code

com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositvO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositVO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositVO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositVO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositvO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositVO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositVO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositVO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositvO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositVO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositVO.xml
com.ofss.fc.ui.model.td.mixedpayin.vo.FundTermDepositVO.xml

View Object Path
(Screen/taskflow)

C
EAttributs Name
accountNo
principalBalance
payinAmount
transactionRefNo
userRefNo
acctCCy
productCode
partyld
branchid
primaryReason
secondaryReason
narrative

VO Attribute
Name

7.1.2 Receipt Format Template (.rtf)

This template is used for defining the format of the output receipt. Different data elements which need to be
shown in the output receipt are mentioned in this RTF report format template. The node will be taken from the
above generated Excel file from 'RTF Node' column for specifying the output value in the final output RTF.

D
EI Attribute Type
java.lang.String
java.math.BigDecimal
java.math.BigDecimal
java.lang.String
java.lang.String
java.lang.String
java.lang.String
java.lang.String
java.lang.String
java.lang.String
java.lang.String
java.lang.String

Attribute Type

| v | RTF Node [=]
<?FundTermDepositVO_accountNo?>
<?FundTermDepositVO_principalBalance?>
<PFundTermDepositVO_payinAmount?>
<?FundTermDepositVO_transactionRefNo?>
<PFundTermDepositV0_userRefNo?>
<?FundTermDepositV0_acctCCY?
<PFundTermDepositVO_productCode?>
<?PFundTermDepositVO_partyld?>
<PFundTermDepositvO_branchid?>
<?FundTermDepositVO_primaryReason?>
<PFundTermDepositVO_secondaryReason?>
<?PFundTermDepositVO_narrative?>

Reference in
RTF template

7 Receipt Printing | 119



7.2 Configuration

The sample rtf template is shown below:

Figure 7-5 Receipt Format Template

- )= ocument in D: extensibility\OBP-Extensibility_Guide.docx [Compatibility Mode] - Microsoft Wort -
p\H2-0 D DASVN bility\OBP-Extensibility_Guide.docx [C bility Mode] - Microsoft Word s X
L) §

: | Home | Inset  Pagelayout  References  Mailings  Review  View @
o M P S B
[E B Times New Roman o AaBbCel| AaBbCI AaBb( daBbCi AaBb( _ & eptace
Pasts - 3 - - - = =||t=- - - _ Char
R [B 1 U -abe x, x Aar|¥- A = =| ] TMormal | No Spaci.. Headingl  Heading 2 Title - ml:gf I} Setect~
Clipboard = Font Paragraph = Styles %/ Editing

Bank Name <?BankShortName?>

Branch Address <?BranchName?>

Posting Date & time: <?PostingDate?>

Transaction Ref No: <?TransactionRefNo?>

EventName: Fund Term Deposit

Account Number: <?AccountDetailsVO_accountNo?>
Deposit No: <?PayinDepesitNo?>

Account Title: <?AccountDetailsVO_accountTitle?>
Account Currency: <?AccountDetailsVO_currency?>
Payin Amount: <?PayinAmount?>

Value Date: <?ValueDate?>

Net Interest Rate: <?TDPayinDetailsVO_netRate?> %
Maturity Date: <?MaturityDate?>

Deposit Term: <?TDPayinDetailsVO_years?> years :
<?TDPayinDetailsVO_months?> months : <? TDPayinDetailsVO_days?> days

Interest Payout Frequency: <?TDPayinDetailsVO_intPayoutFreq?>

Narrative: <?TDPayinDetailsVO_narrative?>

Page:1ofl | Words:62 | English india) |

7.2 Configuration

This section describes the configuration details.

7.2.1 Parameter Configuration in the BROPConfig.properties

Following configuration parameters are required to be set in the BROPConfig.properties file.

m receipt.print.copy: Set to ‘S’ (default) if Single receipt is required. Else, set to ‘M’ for multiple receipts.

The receipt will be stored in current posting date ‘month/date’ folder structure.

m receipt.base.in.location: Location for the RTF templates, which is configured as

‘config\receipt\basein\template\” structure on the Ul server. (For RTF development purpose this

location will also have the XML generated while processing receipt.)

m receipt.base.out.location: Location for generated receipt, which is configured as
‘config\receipt\baseout\’ structure on the Ul server.

m ui.service.url : Ul URL http://IP:port format.

120 | Oracle Banking Enterprise Originations Ul Extensibility Guide



7.3 Implementation

7.2.2 Configuration in the ReceiptPrintReports.properties

This file contains the key value pair of the Task Code of the screen and the corresponding template names,
comma separated if more than 1 template is referred by screen.

TaskCode=RTF Filename

Where TaskCode: task code of screen for which receipt print will be enabled and RTF Filename: name of the
RTF template which will be used for the creation of the output with the same filename.

For example, TD002=FundTermDeposit

Figure 7—6 Receipt Print Reports

[=| PrintVoucherReports. properties

1 BEMO&=EranchBatchStatusInguiry

2 CASA001=CashDeposit Ubank,C ashDestit_ND.El

7.3 Implementation
The implementation for the print receipt functionality is explained in the following steps:
1. Once the screen is opened, Template checks ‘ReceiptPrintReports. properties* file if the Task code of

the opened screen is present in the property file. The ‘Receipt Print’ button will be rendered in a
disabled state.

2. On successful completion of transaction (successful Ok click), Receipt Print button gets enabled.

3. Onclick of Receipt Print button, all the VO’s on current screen are fetched and created as a XML with
data (for RTF development reference, this XML is not deleted at the moment but on environments
these will be deleted). The RTF and XML merge up to create and open the receipt in the pdf format.

4. Receipt will be stored with the file name as <Logged in userld_TemplateName>

The sample output receipt in the PDF form is shown below:

7 Receipt Printing | 121



7.4 Special Scenarios

Figure 7—7 Sample of Print Receipt

T/ Acrobat Decument - Adobe Reader =]
File Edit View Window Help x
SR Ze B 8| [ @[] 8 8|2z Tools | Sign | Comment
I! ol

Bank Name SUN

Branch Address CEO SUNCORP BANK

Posting Date & time: 28-Feb-2013

Transaction Ref No: 059002382603 3
Event Name: Fund Term Deposit

Account Number: 0000012110

Deposit No: 30

Account Title: Derk Zing

Account Currency: AUD

Payin Amount: 10,000,000.00 Il
Value Date: 28-Feb-2013

Net Interest Rate: 4%

Maturity Date: 28-Sep-2014

Deposit Term: 1 years : 7 months : 0 days

Interest Payout Frequency: YEARLY

Narrative: Bank

7.3.1 Default Nodes

As per the functional specification requirement, some default nodes are already added in the generated XML.
The list of those nodes are as follows:

= BankCode

m BankShortName
m BranchName

m PostingDate

m UserName

m BankAddress

m BranchAddress

m LocalDateTimeText

7.4 Special Scenarios

There are some cases, where some of the attributes are not available in the VOs of the screen and the value
needs to be picked from the response of the transaction. There are also some data values which need to be

122 | Oracle Banking Enterprise Originations Ul Extensibility Guide



7.4 Special Scenarios

formatted first and then published in the PDF.
These values can be added to the pageFlowScope Map variable 'receiptPrintOtherDetailsMap'.

The population of those values needs to be done in the Backing Bean, after getting the response of the
transaction in the following manner:

MessageHandler.addMessage (payinResponse.getStatus()) ;
receiptDetails.put ("TransactionRefNo",payinResponse.getStatus
() .getInternalReferenceNumber ()) ;

SimpleDateFormat receiptTimeFormat = new SimpleDateFormat ("hh:mm:ss

a") ,.
SimpleDateFormat receiptDateFormat = new SimpleDateFormat ("dd-MMM-
yyyy");

HashMap<String, String> receiptDetails = new HashMap<String, String>
() ;

Date date=new Date (getSessionContext ().getLocalDateTimeText ()) ;
receiptDetails.put ("PostingTime", receiptTimeFormat.format
(date.getSQLTimestamp ())) ;

if (payinResponse!=null && payinResponse.getValueDate () !=null) {
receiptDetails.put ("ValueDate", receiptDateFormat.format
(payinResponse.getValueDate () .getSglDate())) ;

}

ELHandler.set ("#{pageFlowScope.receiptPrintOtherDetailsMap}",
receiptDetails) ;

Internally, the functionality adds all the details in map variable, other than VO's data. While receipt printing,
template checks the Map variable and if not null, it gets all the key-value from the map and show them in XML
which is used later on for generation of receipt.

7 Receipt Printing | 123



124 | Oracle Banking Enterprise Originations Ul Extensibility Guide



8 Extensibility Usage — OBP Localization
Pack

OBP shall be releasing localization pack which ensures an optimized implementation period by adapting the
product to different regions by implementing common region specific features pre-built and shipped. Every
bank in different regions have different tax laws, different financial policies and so on. The policies in US will
be different from those in Australia.

The localization packs leverage OBP extensibility to incorporate regional features and requirements by
implementing different extension hooks for host and / or different JDeveloper customization functionalities for
Ul layer. This section presents a use case from OBP localization pack as implemented using the extensibility
guidelines as a sample which can be referred to and followed as a guideline. Customization developers can
implement bank's specific requirements on similar lines.

For example, in LCM022 'Perfection Capture' screen, the details section is shown with the additional fields
which are defined for a particular location.

Figure 8-1 Perfection Capture Screen

Account ¥ Back Office »  CASA Channel * Collection + LCM~ Loan~ Origination ¥ Party v PaymentAnd Collection ¥  Securi 3¢ W

o

Perfection Capture

[ Read =+ Create | =) Print «# Ok ¢ Clear B Cancel

Perfect Charge

[l Collateral Perfection Details

Charge Registration Number * Charge Status Proposed i
Execution Date By *Title Documents Status [=]
= Charge Registration Date Gy Charge Registration Required Yes
* Date of Stamping By Stamping Required Yes
N * Registration Amount | $0.00 AUD i
* Stamping Amount  $0.00 AUD E
End Date Changed @9 Processed Date %
Amended Date % Amended By
Removed Date & Removed By
Token Secured Party Group
Change Number Origination -
Giving Of Motice Transitional [7]
Earlier Registration Number

OK.

[+ View Document Details

View = | 4 Detach

Index Type Index value

8 Extensibility Usage — OBP Localization Pack | 125



8.1 Localization Implementation Architectural Change

8.1 Localization Implementation Architectural Change

Architecturally, the following points are considered:

m Localization package will be over and above the product.
m Customization packages will be over the Localization and the Product.

m Any changes done for Localization should ensure that future product changes as well as customization
changes will work seamlessly without any impact.

The additional fields which get identified and developed as part of localization requirements are in its own

project, package, configuration, constant files and tables.

For example, the typical flow of the above mentioned perfection attributes added as part of localization
requirement is shown below:

Figure 8-2 Localization Implementation Architectural Change

Colstral Perfection 1
update.
[Atosizatonts ) d Localzaton Proxy Layer
jent |

il

i

ChorgeSenvice MaintenanceDomainService

1 rwbeomse | |

8 : update()

The Package structure for the implementation is shown below:

126 | Oracle Banking Enterprise Originations Ul Extensibility Guide



8.2 Customizing Ul Layer

Figure 8-3 Package Structure

4] m

com.ofss.fc com.ofss.fclz.au

com.ofss.fc.appx.lu'n.service{ _________________________ LEUSESEX . - - | com.ofss. fo.lz.au.appx.lom. serviie
.ofss. fc.app.lcm.service €7 ------ :
com.ofss.Tc.app ‘:"”SEW'CE{ __________________________ <<uses»> | com.ofss.fc.lz.au.app.lam. service
com.ofss.fo.app.lem.dio fer -2 com.ofss. fc.lz.au.app.lom. dto
=R
<<Uses >
{.: ............................................ e

8.2 Customizing Ul Layer

This section explains the customization of Ul layer.

8.2.1 JDeveloper and Project Customization

For the customization of the Ul layer, JDeveloper needs to be configured in the customizable mode as
explained in the ADF Screen Customization Sections.

The example for the customization of the JDeveloper is described below:

CustomizationLayerValues.xml

8 Extensibility Usage — OBP Localization Pack | 127



8.2 Customizing Ul Layer

Figure 8—4 Customization of the JDeveloper

- Oracle IDeveloper 11g Release 1 - View.jus : com.ofssfclz.au.uiview.lem jpr : DARZBOracle\l ZN\wiew\, mds\d izati ustomizati alues.xml

File Edit View Application Refactor Search Navigate Build Run Source Versioning Tools Window Help

FoEad 9v® HEE 0 -0 & atdde- > -&- 4

3] customizationLayervalues.xml_% | [ adf corfig.xml * [[i2] CustomizationLayerValues.xml * |
&)

(68

<cust-layers xulns="http://xulns. oracle. con/uds/de™>
ZCust-layer name="siten L0 pPLerix=rgis
<!-- Gemerated id-prefix would be "s1” and "s2" for values
"sitel” and "sitez”.--»
<cust-layer-value valus="1Z" display-name="LEZ" id-prefix="1"/>
<cust-layer-value value="site2” display-nawe="§ite Two" id-prefix="z'/»
</cust-layer>
<cust-layer name="option” 1d-prefiz="o":
<cust-layer-value value="LI" display-name="LEZ"/>

<cust-layer-value valus="option” display-name="Option”/>
</cust-layer>

” ” "
be excluded in design time by defining size as "ho_valuss"-->
<cust-layer name="runtinme_only layer” walue-set-size="no_values”/s|
<cust-layer name large™
<!-- Gemerated id-prefix would be "usl” and "usz” for values "userl”
and "user2” since no prefix was defined per-name lewel -->
<cust-layer-value valus="ugerl” display-name="First Tser” id-prefi
<cust-layer-value value="user2” display-name="Second User” id-prefix
<!-- Generated id-prefix would be "useraduwin” and "userguest” for
values “adnin® and “guest” since no prefix was defined at both
layer level and nsme lewel -->
<cust-layer-value valus="aduin” display-name="Adwinistrator”/>
<cust-layer-value value="guest”/>
</cust-layer>
</cust-layers>

ruzer” walue-set-size

Figure 8-5 Customization of the JDeveloper

com.ofss. fc.ui.core "sitel” and "site2”.-->
com.ofss. fo.ui. template <cust-layer-value value="LZ" display-name="LE" id-prefix="1"/»
com.ofss. fe.uiview <cust-layer-value value="site2” display-name="Site Two" id-prefix="2"/»
com.ofss. f.Li.view.lam </cust-layer>
<cust-layer name="option” id-prefiz="o">
<cust-layer-value value="LZ" display-name="LI"/>
<cust-layer-value value="option” display-name="0ption”/>
</cust-layer>

<!-- Customization layers that are only meant for pantine usage can
be excluded in desigm time by defining size as "no_values"-—>
<cust-layer name="runtime only layer” value-set-size="no_values'/>
<cust-layer name="user” value-set-size="large”>
<!-- Benerated id-prefix would be "usl” and "usZ” for values "userl”
and Muser2" since no prefix was defined per-nawe level -->
<cust-layer-value value="userl” display-name="First User" id-prefix="usl"/>

1> Application Resources <cust-layer-value value="userz” display-name="Second User”™ id-prefix="usz"/>
| Data Controls @7 <!-- Generated id-prefix would be "mseradwin” end "userguest” for
I Recently Opened Files walues "adwin” and "guest” since no prefix was defined at both

layer level and name level -->
<cust-layer-value value="aduin” display-name="Adwinistrator";>
<cust-layer-value valus="guest”/>
&, & < /cust-layers
{23 warnings (1) </cust-layers:
[5) This file defines all valid customization laver valug
€9 custdayers
€9 cust-ayer
£ custHayer
+.[5] Customization layers that are only meant for|
€D cust-ayer
4¥ custHayer

= CustomizationLayerVakies xml - Structure % | (]|

Source | <

<!--This file defines all valid customization layer values for use in Customization Role for this spplication. This file completely overrides layer values configured at glo

4

T

4% #processing-instruction ke

A Ftext

Eproperty Inspector X

5/ (a ]

,

[ElMessages - Log * | iSimulations X \@Dmmmraﬁm x [=] || view - Customization Context X
Loaded global customization layer values from D-\RzBorfj_) Vi without Customizations
Loaded customization layer values for View from D:\R2zEf{3) Editwith folowing Customization Context

WARNING: Project "com.ofss.fe.lz.au.ui.view.lem.jpr”

Tp layer Name Value
user First User (user1)
[C] option LZ (L2).

. § (Customization Context : user/user1, option/LZ
) (Confiqure application laver values
ssages Extensions X A=

olumn 1

adf-config.xml

| Insert

If the changes are not reflecting, adf-config.xml needs to be opened from the application resources and
Configure Design Time Customization layer values highlighted in the below image needs to be clicked. It will
create a CustomizationLayerValues.xml inside MDS DT folder in application resources. All the content from

128 | Oracle Banking Enterprise Originations Ul Extensibility Guide



8.2 Customizing Ul Layer

<JDEVELOPER_HOME>/jdeveloper/jdev/CustomizationLayerValues.xml needs to be copied to this
CustomizationLayerValues.xml. This is to ensure that the changes are reflected at the application level.

Figure 8—-6 Configure Design Time Customization layer

2 Oracle IDeveloper 11g Release 1 - Viewijws : com.ofssc.z.au.uiviewlemipr SIS —— - =100 e

File Edit View Application Refactor Search Mavigate Build Run Versioning Tooks Window Help

BEoEG 90 XER O O & Afda->-@ A4 @
|Application * | @erMPro., x |G x [ ervalues.xml % | [ea]ad X ervalues.xml * (=) B component Palette *

=
View - @ ~ |alPages
EEiviedts Blfv-E- Business Components ® & q
e mrrrr B Note that additional configuration can be edited manually in the source.
m.ofce fof2.a0. . OpHGNCC MDS Configuration & #cdata-section (ML) M
o ofis. fe lo.au.ui view lan Contraller £l Customization Configuration: Match Path = /" & X (5] scomment (L)
Vi
. ofes. feui core e se the following editr far cases where the customization configuration map t the dlobal namespace (7). € #processng-insiruction ()
m.ofss. fe.ui. template A #text (v
m.ofss. fo.ui.view Gntonizniion Clasey - &% adf-adfm-config (http:/amins.oradi]
m.ofss. fe.ui.view. lam oracle.adf.share. config. UserCC >
i com.ofss. fc.|z.au.ui.optioncc. OptionCC I 42 adf-controller-config (http:/famins. ol
~ Application Resources m € BC4IConfig (http://xmins.oracle. con|
~[Z] Connections G €% cache-config thttp://xmins.orade. cc|
7] Descriptors /— 4% cust-config (http: //xmins. oradle.cor|
4
z-Carennae € eventnotification (http: {fmins.orad
% application. xml Configure Design Time Laver Values € fle-type-config (htt:/fxmins.crade
£ owallet.sso
B sazn-data.xml € mds-component-config (nttp: jxming
1B ps-config.xml €% mds~config (http://xmins.oradle.com)
B8 weblogic-application. xml €» metadata-store (http:/fxmins. oracle|
&- (] ADF META-INF € metadata-store-usage (http: i
-] adf-config.xl ‘ 4 namespace (http:/fxmins.orade.con|
- 2] connections. i R P e
services <\ | 3
stomizationL ayerValues, xml @Property Inspector
* Z (48
| Data Controls &7
| Recently Opened Files
= CustomizationLayerValues.xml - Structre x| [
»*
£ Warnings (1)
- This file defines al valid customization layer value| Overview | Source | History | ¢ >
=o :;t:::;a, [ElMessages -Log *  ¢Simulations * |[=/Documentation * (2] view - Customization Context % [m]
& custlayer Loaded global cuscemizavion layer values from D:\Rzmor, ) View without Customizations L
I Customization layers that are only meant for | Loaded customization layer values for View from DI\RZB{ (%) Edit with following Customization Context
L astiaer ARNING: Brojact "com.ofss.fola su uiview lem Jps” Al = ke i
gl i v

8 Extensibility Usage — OBP Localization Pack | 129



8.2 Customizing Ul Layer

Figure 8-7 Enabling Seeded Customization

= B 8

% Oracle IDeveloper 11g Release 1 - View,jws : com.ofss.fc.uiviewjpr
File Edit View Application Refactor Search MNavigate Build Run Versioning Tools Window Help
g (= - T o (8-
ELLI AR wc‘z Project Properties - DARZBOracle\IZN\iewhcom.0fss.fc Utview\com.ofss feuiviewjpr 8 v [ (o
{&lapplication * | (£} Database Navig. .. tPalette %
d|
View )| ADF View
= Projects Project Source Paths () Use Custom Settings
m.ofss. fe.z.au. i view.Jam ADF Model (5) Use Project Settings
com.ofss.fe.ui view s
. ofss.felz.au.ui. taskfows Ant
oS Iezau .. Business Components When ADF Faces is present, JSF HTML widgets wil not show when dropping datacontrols.
Compiler [[] nclude JSF HTML Widgets
Dependencies
h :Je:’:w:elm Configure customization options for ADF Faces, Nate that write access to WEB-INF/web. xml is required.
odule
- Extension Enable User Customizations
Javadoc () Eor Duration of Session =
~ Java EE Application (3) Arross Sessions using MDS
35P Tag Libraries Enable Seeded Customizations
357 Visual Editor
v Libraries and Classpath Configure default skin famiy for this project.
Resource Bunde
- RunfDebug/Profle Default Skin Family: [# fsessionScope.skinFamily} -
Technology Scope
» Application Resources
) Data Controls
) Recently Opened Files
=structure * | [Elstack * | 5540F s |
4 m | »
+ 671, 510px 3 1280 x 1024px 100% (=) {} (O]

Libraries and Classpath

In the "Libraries and Classpath" section, the previously deployed com.ofss.fc.lz.au.ui. OptionCC.jar
containing the customization class then needs to be added.

130 | Oracle Banking Enterprise Originations Ul Extensibility Guide



8.2 Customizing Ul Layer

Figure 8-8 Library and Class Path

(%% Oracle IDeveloper 11g Release 1 - View,jws : com.ofss.fc.uiviewjpr = @ =
File Edit View Application Refactor Search Mavigate Build Run Versioning Tools Window Help
- p
Goag ne % wc‘z Project Propafties - DARRraN eI N wicom Bhe i Mewcomore o 1 1 . ] (g8~
{@lApplication * | [ Database Navig... tﬂt Palette X
o | (@ =5 )| tibraries and Classpath
~ Projects Project Source Paths () Use Custom Settings
com. ofss. . lz.au.ui view.Jem " ADF Model (3) Use Project Setings
com.ofss.fe.ui.view :: view Java SE Version:
com ofss felz.ai teskfons - Business Companents [1.6.0_29 efault) [ Change... J
E“"‘D“;’ Classpath Entries:
D::ir;r::;es Export Description Add Library.
£ Module @l ADF Sning Runtime ~
. Extension 1l ADFm Designtime AP =
ovador il Trinidad Databinding Runtime
[T E=uR] E
~ Java EE Application ) Oracle XML Parser v2
15 Tag L‘“";"ES 3 Developer Runtime —
I Visual Edtor ] 5L Runtime
il ADF Mode! Runtime
Resource Bundle il BC4) Runtime
- Run/DebugProfile ) Oracle JDBC
Technology Scope @} Connection Manager
il BC4) Cradle Damains
[ @gllcoreLB
[] @l cusToM_LIB
[ @FcLs
[ ol PrOXY LI
[ gl TASKFLOW LIB
[ il TEMPLATE_LIB
[] @M com.ofss.fe.ui.customtags. jar
[ §l com.ofss.fc.ui.components.jar
[ il VIEW_COMMON LI
[] Bl TASKFLOWCASA_LIB
i} ADF Management Pages
] Orade ADF DataTag
b Application Resources il B4 HTML
| Data Controls i} BC4 Struts Runtime
I Recently Gpened Files ) Commons Digester 1.3
@l Struts Runtime
— il 51 Data Control Runtime
=stucture x |[Estack * |FADF st ] £36 50O Client
] Facelets Runtime i 2

adf-config.xml

In the Application Resources tab, the adf-config.xml present in the Descriptors/ADF META-INF folder needs
to be opened. In the list of Customization Classes, all the entries should not be removed and the
com.ofss.fc.lz.au.ui.OptionCC.OptionCC class to this list needs to be added.

8 Extensibility Usage — OBP Localization Pack | 131



8.2 Customizing Ul Layer

Figure 8—-9 MDS Configuration

5 Oracle JDeveloper 11g Release 1 - Viewjws : com.ofss.feuiview.jpr : DAR2BOracle\LZN\view\,adAMETA-INFadf-configoml
File Edit View Application Refactor Search Mavigate Build Run Versioning Tools Window Help
foEg9e XEE O0-0- hiidw- P-F-B-+EQREPIT A& ST EW
Appiication % | [ZDatabase Navig... * [@ x | * [ |[o]adf- x (=] B component Palette *
& vew ~ & - @ ~||[aPages
= Projects Bl V-5 Business Components ) ) -] [l
z:: :f; fri :j.?nua: view.lam MDS Configuration @ Note that additional configuration can be edited manually in the source. T T—
com.ofes. Fe.lz.u.u taskflows Eorrs E] Customization Configuration: Match Path = /" % K 5 #comment (ML)
W= Use the following editor for cases where the customization configuration map to the global 4 #processing-nstruction (M)
namespace (7). A #text M)
Customization Classes € adf-adfm-config (http:/fxmins orade, com/adfn
oradle. adf.share. config.UsercC > €% adf-controller-config (http: fumins.oracle. com/
com.ofss.fe.lz.au.ui.optionce. OptioncC * €9 BCAIConfig (http: jxmins.oradke. com/bedj/confi
% € cache-config (http: //xmins. oradle.com/mds/con| =
% €% cust-config (http: /xmins.oracle.com/mds confif
y € eventnotification (http://iemins. oradle. com/md|
Configure Desian Time C: Lover Values D e R e
€% mds-component-config (hitp://xmins.oradle. con|
4% mds-config (nttp:/fxmins.oradle. com/mds confic
~ Application Resources & metad (i Ins. orade.com/mds/c
23 Connections €% metadata-store-usage (http:/fxmins.orade. con|
&[] Descriptors & namespace (http:/ mins oracle. com/mds/confi
&[] META-INF & p —contfig (n . e -
8 application.xml = - : o o]
15 cwalet.sso type-config (http://xmins.crade. com/mds con
B jan-data.soml €% untyped-dependency-config (http: f/xmins.orac
-4 jps-config.xml
&) weblogic-application. sl
[«2] adF-config.xanl
-{e] connections.xml
v
Overview | source | History | ¢ >[5}
|: Data Controls @7 ! | il
I Recenty Opened Files Eltog * |@ZEredkpoints * || Smart Data * ata * |Wwatches * |maaDFbata * |42 * g *x B x @)
(g8 M- Actions =
tructure % | (Elstack x | 55,A0F Structure x 7L 5 [ at weblogic.servies incernsl tInvecationiesion. wraplu
st wsblogic. servier internsl v - tInvecsticniction run (W =

Jdeveloper is then restarted and the entry needs to be checked for com.ofss.fc.lz.au.ui. OptionCC. If the jar
entry is not reflecting, then source needs to be clicked and the entry as highlighted and shown in the below
image needs to be manually added.

132 | Oracle Banking Enterprise Originations Ul Extensibility Guide



8.2 Customizing Ul Layer

Figure 8—10 MDS Configuration

=5 Oracle JDeveloper 11g Release 1 - Viewjws : com.ofss.fc lz.au.uiviewlcm pr : DAR2BOracle\LZNiview\ adfMETA-INFladf-config.xml = i

File Edit View Application Refactor Search Navigate Build Run Source Versioning Tools Window Help

FocB@ 9wt 480 0-0 & HBdem- - A (&-
(ElApplication x| @EPMProjec... X [ x O [¢]c erValues. sl % | [c2] adf- x| o oL ayerValues.xml X (&) | g component Palett= x
— - ——
[E3) view MERIT $4) ] 2 Pages
= Projects @& 7-E- </taglib> ® {
com.ofss. fc.lz.au.ui.model.lan </taglib-config> . |
om.ofss. fi.|2.5u.L1,OptionCC </adf-faces-CORLig> O
om.ofss. fc.|z.au.ui.view.lcm B ondsC:adf-mds-config ¥nlns:mds="htcp: //xmins.oracle. con/nds/config” ¥nlns:mdsC="http: /fmlns. orac ) scomment (1)
om.ofss. fic.ui.core =] <mds :mids-config version="11.1.1.0007> 4P #processing-instruction (ML)
om.ofss. fe.ui. template g <mis :persistence-config> A #text poaL)
om.ofss. f.ui.view a <mds :metadata-nanespaces> & adf-adfin-config (http:/fxmins.orack
com.ofss. fe.ui.view.lan <mils : namespace path="/mds” netadata-stors-usage="MAR_TargetRepos’ /s & adf-controller-confia (http: fxmins.o
o < /mds :metadata-namespaces> ° - e orac
ication Resources - rds metadatarstore-usages> BC41Config (http: famins oradke.con
{3 connections e t age defaul e="true” deploy-target="rrue” id<"MAR_Tar 4¥ cache-config (http:/xmins.oradke.c
{30 Desaiptors =] i ol "oracle.nds.persistence. stores. db. DBNetadataStore’ &P cust-config (http://xmins. orade. corr
=] D META-INF <mils:property value="nds-dev” name="repoIltOLY-name” > €% event-notification (http://xmins.orac
: % EDD‘I‘IEE:D"-W‘ <mds :property walue="NGP_VZ.0" name="partition-name”/> €5 fie-type-config (http: fxmins.orade
-] cwallet.ssa <mids:property value="jdbc/nds/MDSDS" name="jndi-datasource"/>
§ B jazn-data.xml < /mis:metadata_stores €% mds-component-config (http: //sming
1B, jps-config.xml </nds metadata-store-usage> € mds-config (http: //xmins. orade.com
B weblogic-application. xml </mds:metadata-store-usages> €% metadata-store (http://xmins.orace
=-{) ADF META-INF < /mds :persistence-config> 4 metadata-store-usage (http://xmins
% adf-config.xml ‘ a CUST-CORLLg> &9 namespace (http: ffxmins. oracle.con
; e connections.m = ands:match path=" /" @ nersistence-confin thtin:/fmine. ora
&[] services <mds:customization-class name="oracle.adf.share. config. UserCC™ />
T mpsor <mils:customization-class name="con.of33, £0.1z.an.ui. oprionce. 0ptionCCr />

[ customizationt ayerValues. xml </mds :match> Badf-mds-config - Property... %

<mas:cust-config> 0
L

WoeE s (@

g T
ot Contzols @Y </misC;adf-nds-config> omds: [tip:mins orade comjmds
 Recently Opened Fies B <adf-desktopintegration-servlet-confily xmlns="http://xulns.oracle.cou/ads/deskEopinteqracion/sery
= <controller-statemanager—classs omdsC: [litp:/mins,orade.com/ad]
= aracle.adr.desktopintegrarion. controller.1npl. ADFeCantrollerstateanager
2 adf-config.xml - Structure % 5] puted . g
- </controller-state-manager-class>
</adf-desktopintegration-servlet-config>
569 adf-config </adf-configy
€® adf-properties-child Overview | Source | History | €| d
€Y adfsecurity-chid ;
FPS Edf_ﬁces_?mﬁg [ElMessages -Log * | simulations * |[=Documentation x (]| View - Customization Context % o
E#Y5df-mds-config Loaded global customization layer values from D:\R2BOzf) View without Customizations R
& adfdeskiopintegration-serviet-config Loaded customizavion layer walues for View from D:\R2Bf(3) Edit with folowing Customization Context
WABNING: Project "com. ofss.fe.lz.au.ui view.lem. ipr” Al ‘.ﬁp aver Name volue ‘
o i v

8.2.2 Generic Project Creation
After creating the Customization Layer, Customization Class and enabling the application for Seeded
Customizations, the next step is to create a project which will hold the customizations for the application.
Generic project is then created with the following technologies:

m ADF Business Components

s Java

s JSF

m JSP and Servlets

Following jars must then be added to the Project Properties and in the classpath:

m Customization class JAR (com.ofss.fc.lz.au.ui.OptionCC.jar)

m The project JAR which contains the screen / component to be customized. For example, if you want to
customize the Collateral Perfection Capture screen, the related project JAR is
com.ofss.fc.ui.view.lcm.jar.

m All the dependent JARS / libraries for the project needs to added.

m Finally newly created project (example: ‘com.ofss.fc.lz.au.view.lcm’) needs to be enabled for Seeded
Customizations.

8.2.3 MAR Creation

After implementing customizations on objects from an ADF library, the customization metadata is stored by
default in a subdirectory of the project called library Customizations. Although ADF library customizations at

8 Extensibility Usage — OBP Localization Pack | 133



8.2 Customizing Ul Layer

the project level is created and merged together during packaging to be available at the application level at
runtime. Essentially, ADF libraries are JARs that are added at the project level, which map to library
customizations being created at the project level. However, although projects map to web applications at
runtime, the MAR (which contains the library customizations) is at the EAR level, so the library
customizations are seen from all web applications.

Therefore, an ADF library artifact are customized in only one place in an application for a given customization
context (customization layer and layer value). Customizing the same library content in different projects for
the same customization context would result in duplication in MAR packaging. To avoid duplicates that would
cause packaging to fail, customizations are implemented for a given library in only one project in your
application.

Step 1
Select the Application Properties.

Figure 8-11 MAR Creation

1 E 9 ¢ =l Untled - Paie (ol )|
Home | Wiew L
cop | g |NwOODEA - @ owine- 2 —THEAEE EEER
) e e | L2A NS e — ! U em m a
Paste Seledt & A Brushes A o he )Y = Size Calor | Color Edit
- = ‘kPRotate - ] . 4ug000s - 1 F] colors
=5 Oracle JDeveloper 11g Release 1 - Viewjns : com.ofss f lzauiviewkmipe Lo (o)
fle Edt View Application Refagtor Search Mavigate Buld Run Versigning Took Wimdow Help
Gega9e XAR Q-0  &- A8da- b -§-B-+A0AEANPI Y A 3TIQEE -
| Applcation % | B\Database hav... x | * |@ x [ 8 Component Palette X
E ~d-

ARV E| Newbroject

% [0 com.ofss. ftzauiviewdom 3 Mew.. =
-] com.ofes. fe.uiview Dpen Project...
Close Apphcation
X Delete Application

Rename Apglicaion..
o Exploce Directory

T Notepag

@ Mozilla Firefox

& Intesmet Explorer

ix Word

@ Fnd Application Files

Show Dyerview
T Fiter Applcation..
Secune ]
Deploy ]
I3 Reformat Cotea
Oeganize Impedts ColeARD
Cgmpare With ]
Replace With b

Step 2
Import com.ofss.fc.lz.au.ui.view.lcm project into application. Click Application Menu and select Application
Properties.

134 | Oracle Banking Enterprise Originations Ul Extensibility Guide



8.2 Customizing Ul Layer

Figure 8-12 MAR Creation - Application Properties

|l ) (v | Untitied=Paint o i [E= =
Home | View g
E‘I ¥ gdaw |rarall kg |[NVOOOE AL owine- | =
) Copy A b O OO QA0 - s .
hae - | @ A Qj Euan 4 A 2000 s
Clipboard Toals Shapes “cn‘l;:m“
(= Oracle JDeveloper 11g Release 1 - View jws : com.ofss.feuiviewjpr = B B
Fle Edit View Application Refactor Search Mavigate Build Run Versining Took Window Help
GeEg 920 Xan 0 -0 & 48da- p-&-0-+@FNERP I A Z0968E (0o
Baogiation * Rpombeserovg... * @ * @ x O B componentraette *
| ¥ew -8
7 Projects @V E
- com.ofes. fe.lz.auu.OptonCC
& (T com.ofss.fe.lzauus.view om = Application Properties - DARZEOracle!LZNview!\Viewjws
& T com.ofts.fe.uiview
&) Appicatton Sources (& )| ploy
3 :.::.:'wi - |~ Aopicaton Cantent ) Use Custom Settings
& 6 com Customzaton Livarss () Use Acphcalin Settrgs
4o —— Deloment o
& (] images
(0 upkond iy :.;mmﬂes e
&) wetkeb
g WS Py Stare
& JweBaF
& CPageFioms
@ sbouts s
- @ Defadt
%w-hﬁ
@] togin b
9] ot [ vl Desripders Dur
[ main o Security Deployment Optons
Decide whesher fo averwrite the fulowing securty objects if they 'were previcusly
dephoyed
[¥] Agplcation Poloes
7] Credentias
Decide wheher io migrate the folowing securly obiects.
(9] Ustes and Greups
[ ]
Step 3

Select Deployment and click New.

8 Extensibility Usage — OBP Localization Pack | 135



8.2 Customizing Ul Layer

Figure 8-13 MAR Creation - Create Deployment Profile

5 Oracke IDeveloper 11 Release 1 - Viewjws : comolss.fe lzauuiviewdomjpr —— — o@ B
File Edit View Application Refactor Search MNavigate Buld Run Versioning Took Window Help
- LR ——
B0 90 XARO-0- & A8l -0 % 14 5008C (e |
Brovicaton x Bposbesen... x| x | 1 [ enbetecsorcopnre sif x | ] colavrabestectonCaphrebageDetomiom * [ocolateraberiectonaptre sffamt x (01 B compuoentpaete 8]
[Even =R 3% ™ v
¥ Projects RNv-E- ands:custamization versions"11.1.1.60,13" Foroutt 0
@ (23] com.ofee.fe.tz.au.ui.modelian S 14 H by
@[3 com. ofss. fe.tr.au.ui.OpionCC =5 Application Properties - DARZEOracke\LZN\iewi\Viewjws R
% () com.ofss.fe.lz.auui.view kom BEC
53] com.ofss eiem e )| Deployment @ sprocessing netuctin
| g‘?fmwwm-- - A==
| csckwome s openitio see |
o] wewerpe »
s Rn || BmRe | ==
woreid| ExRFe
Burde
Desorpton:
Creates a profile for deploying 2 metadata MAR fie.
]
=]
Geropesty nspecter % | 8]
Decide whether to migrate the folvwing securty objects. T (B d B
(= ] =] |
i+ Applcation Resources F
 Data Contros Y
Step 4

Select the MAR File option.

136 | Oracle Banking Enterprise Originations Ul Extensibility Guide



8.2 Customizing Ul Layer

Figure 8-14 MAR Creation - MAR File Selection

| Orade JDeveloper 11 Release 1 - View jws : com.ofss feuiview jor
File Edit View Application Refactor Search Navigate Buld Run Versioning Took Window Help
GoBa Mo YER0-0 - &-d8da-D>-4-0-»EQNEPIT A 5206
Bericaton x Boetasetnig.. x[@ @ x [
EL -8
 Froects QRv-E
8- [ com.sfes.feIr.2u.6. OpfionCC
(3 com.ofs. fe..au i view Jom 5 Application Properties - DAR2BOracle\LZNvien!\View,ws
& comaofs.feivien —
&1 Appication Sources [y '| Deployment
BDM —_—
& [ ieb Coment : & Create Deplogment Profje
#Qam | o 5 .
ECIGS : ' Click OK to create your new B open it ko see its cong
& images Archive Type:
— Resure
Qoo vy |l e
& viebriep " wsed |
® CJWEBDE Hame:;
agwm iR |
sboutls 5 o
—d Defaudt i z -
Em.l‘rbrl Creates a profile for deploying a metadata MAR fie.
-~ {9] kgl
pe
] man g
Decide whether fo migrate the folowing security objects.
(1] Users and Grougs
Step 5

Select MAR from Archive Type and give a name ending with MAR and click Ok.

8 Extensibility Usage — OBP Localization Pack | 137



8.2 Customizing Ul Layer

Figure 8-15 MAR Creation - Enter Details

5 Oracle JDeveloper 11g Release 1 - Viewjus : comofss feuiviewjor o@ B
File Edit View Application Refactor Search Mavigate Buld Run Versioning Jook Window Help

BoE@ e XERQ-O- & 4Rda-D>-3-0-+@VAEAPINE &4 53086k
Siicain x Rpeaboseiong.. * 1@ x 1@ x ()

e Bl
 Profects nav-E
8- [ com.sfes.feIr.2u.6. OpfionCC y
-0 comofs. e r i v om 5 Application Properties - CH\R2BOracle\LZNien\Viewws 8
2 [0 comofss.feiview
0 oplcaton Surces LES /| Deployment
[0 iebContent . 9 Creste Degloyment rofle

#Qam . | . o p

ECIGS . : Click OK to create your new B open it ko see its cong

& (] mages Archive Type:

- Resaurd

o Qe ono || i e

&0 webrieh  vsr |

& LW Hane:

Aboutls sff .
@ Defat e -
] erortnl Creates a profile for deploying a metadata MAR fle,
] oo
9] ogouthinl
] man g
Decide whether fo migrate the folowing security objects.
(1] Users and Grougs

Step 6
Select the ADF Library Customization for com.ofss.fc.lz.au.ui.view.lcm.

138 | Oracle Banking Enterprise Originations Ul Extensibility Guide



8.2 Customizing Ul Layer

Figure 8-16 MAR Creation - ADF Library Customization

|t Oracle IDeveloper 115 Release 1 - View,jws : comaofss feuilvibwjpe =@ B
File Edit View Application Refactor Search Mavigate Buld Run Versioning Tooks Window Help
FoEg 90 XER Q-0 & 48da- > - B »EAVAAPIT A 3@ EE (= )
Shopication * B patbasetenig... X @ * & x O [ Component Paette % 9]
Evew ~@-
 Projects Aav-s-
3@:— FEyrne ey d
-] con] 5 Edit MAR Deployment Profile Properties. s - - iy
e
B (o || ADF Library Customization Sources for com.ofss.fclz.au.uiview.lom
[}
B & Hetado e Grogs Fie Group Name: [RoF Lbrary Customization Sources for com.efss. ez vewon
5 User Metadala
Drectones
= ADF Library Cusfomization Sources for com. ofss. fe.lz.au.ui. OptionCC Order of Contributors:
orctn
5~ HTML Root Dir for com.ofes. fe bz.au.u. view.km D:\R2B0racle\LIN\view\com.of aa. fic. 12, a0.ui, view, 1ow\ LibraryCustomizations Add...
| | = HTML Root D for comofss. feuiview
o
15~ ADF Library Customization Sources for com.ofss. fr.ui.view
Drectories
(ouDekle.
e ) (o] |

Step 7

Select the project for which Library Customization will be included in MAR (com.ofss.fc.lz.au.ui.view.lcm)
and click OK.

Step 8
Select View (EAR File) and click Edit.

8 Extensibility Usage — OBP Localization Pack | 139



8.2 Customizing Ul Layer

Figure 8-17 MAR Creation - Edit File

<5 Oracle JDeveloper 115 Release 1 - Viewjws : comofss feuiviewjor

=2 B ﬁ.‘

[ vew
¥ Projects
(0] comofve.febmuai OpionCC
{9 comoofss.felz.auaiviewam
& (1] comofss.fruiview
-] Applcaion Sources
&[] Ressurrss
-] Web Conttent
#Dam
B0
& images
&[] upload

Step 9

fe Edit View Applcation Refator Search Mavigate Buld Rum Versigaing Tooks Window Help

Bodd 90 XER Q-0 & 48da-p-%-0-+A9AERIE & SIQEE
Brecicaion x Rpabasetovig... x @ x|@ x [

-@-
aav-s
(@ )| Deployment
Agplcation Content () Use Custom Setings
Customization Libraries (%) Uise Agplication Settngs
' mmm, DepomentFofies:
G Ran ] lnbaR, (AR Fie) e
W5 Pokcy Stare —
(Lo )
(& and Syncverize weblogic
Seaity Deployment Options
Decide whether ko ty obects if ey wiene previously
depioyed
[v] Agpication Polces
[¥] Crecknsas
Decide whether to migrate the folowing securly objects.
(] Users and Groups.
Lo J[ e ]

Bcompment Paette x

Select Application Assembly and check the created MAR (IznMAR) and click ok on defaults.

140 | Oracle Banking Enterprise Originations Ul Extensibility Guide



8.3 Source Maintenance and Build

Figure 8—18 MAR Creation - Application Assembly

=5 Oracle Meveloper 11g Release 1 - View ws : comofssfoulviewjpr

Fle Edit View Application Refactor Search Mavigate Build Run Versioning Took Window Help

Ge@g 90 XER0-0 &  4B8da- > -¥-R-»EVAEAPNE A SIQEE

Bhgpicaton x Bossbssrig.. @ x|@x O

[ vew
= Progects
-] com.ofss.fi.lz.au.u. OptionCC
+ chn.ofs.&.lz.w.u.\m.;un
=[] comofss.fe.uiview
-] Applcation Sources
-] Resources
-] Web Content
B Dom
[ Jos
- (Jimages
8- (0 upload
&1 webHep
® Jweae
&1 Page Flows
P Aboutls
4 Defauit s
1) errceimi
18] toginhtml
9] logouthimi
&l main oo

~&-
ARv-E-

8 Companent pastte. X

= Edit EAR Deployment Profile Properties

General

Application Assembly

EAR Options

| |- Fie Groups

& Applicaion Descriptors.
Confributors

Application Assembly

Select the Java EE modules that you would lke fo assemble into your Java EE application.

i

- c_rn.ofss.ft.u.\tw.pr
) & bt
[ & b

pathinErR: |

8.3 Source Maintenance and Build

This section describes the source maintenance and build details.

8.3.1 Source Check-ins to SVN

Along with Ul and middleware source maintenance, there is a set of metadata files required to be packaged in
the deployable packages in order for customization. When performing any changes to a product screen in
"customization mode" the corresponding <screen filename>.xml gets generated. In case of taskflows, the
metadata file is <page definition filename>.xml. The path structure is provided in the below table.

Table 8-1 Path Structure

For
page
definit
ion

File

name | adfmsrc/com/ofss/fc/ui/view/lcm/collaterals/collateralPerfectionCapture/
(with pageDefn/CollateralPerfectionCapturePageDef.xml

path)

Meta-

data com\ofss\fc\ui\view\lcm\collaterals\collateralPerfectionCapture\

file pageDefn\mdssys\cust\option\LZ\CollateralPerfectionCapturePageDef.xml.xml
name

8 Extensibility Usage — OBP Localization Pack | 141



8.4 Packaging and Deployment of Localization Pack

(with
path)

For
Scree
ns

File
name | com/ofss/fc/ui/view/Ilcm/collaterals/collateralPerfectionCapture/form/CollateralPerfectionCaptur
(with e.jsff

path)

Meta-
data
file com\ofss\fc\ui\view\lcm\collaterals\collateralPerfectionCapture\form\mdssys\cust\option\LZ\Col
name | lateralPerfectionCapture.jsff.xml

(with
path)

These meta-data sources are checked into the METADATA folder in the product SVN under the localization
path. During deployment, the EAR implementing these customizations must include these above mentioned
sources in a.mar file.

8.3.2 .mar files Generated during Build

The localization specific build will include a last step, which is creation of .mar (metadata archive) file from the
files checked-in the METADATA folder. This step will create separate .mar files, based on the modules which
these represent. These MAR files are then packaged inside the deployable application EAR
(com.ofss.fc.ui.view.ear).

Typical mar files generated during build will follow the naming convention
com.ofss.fc.lz.au.ui.view.<module>.mar. Example, com.ofss.fc.|z.au.ui.view.pc.mar

8.3.3 adf-config.xml

adf-config.xml stores design time configuration information. The cust-config section (under mds-config) in the
file contains a reference to the customization class. As part of the build activity, this file needs to be placed in
the path com.ofss.fc.ui.view.ear@/adf/META-INF/. Also the customization class should be available in the
classpath during deployment.

8.4 Packaging and Deployment of Localization Pack

In the OBP application, different projects will be shipped in the form of library jars which can be customized
and the new localization-specific application libraries can be created. In the application, the assembly has
been specifically modularized to take care of multiple localizations by prevention of mix-up of jars. The
naming convention for the jars can be defined for different clients differently.

The new customized jars for hosts and Ul needs to be packed with the original jars in the EAR files which will
be deployed on the server. Let's say, we are creating the extension hooks of 'obp.host.app.domain’ jar, then
the separate jars can be defined as 'lz.au.obp.host.app.domain' and 'lz.us.obp.host.app.domain' for Australia
and US respectively.

The similar structure can also be maintained for the other applications across Ul and SOA channels.
'|z.au.obp.ui.domain' can be defined for the customized jar of the project 'obp.ui.domain'.

142 | Oracle Banking Enterprise Originations Ul Extensibility Guide



8.4 Packaging and Deployment of Localization Pack

The new customized jars for hosts and Ul are packed below with the original jars in the EAR files which will
be deployed on the servers.

Figure 8—19 Package Deployment

com.ofss.fc.middleware.ear

com.ofss.fc.view.ear

com.ofss.fc.ui.view.war
com.ofss.fe.lz.au.ui.pc.mar

com.ofss.fe.lz.au.ui.lem.mar

-y

s Lz.au.obp.ui.domain

P s s sEsEE s s s EEEEEEEEEEE

______ s B EE AR EEE S EEE s EEEEE S EE A

8 Extensibility Usage — OBP Localization Pack | 143



144 | Oracle Banking Enterprise Originations Ul Extensibility Guide



9 Deployment Guideline

This chapter explains the deployment guidelines.

9.1 Customized Project Jars

The customized extension projects are to be bundled in the different extensibility jars which are required to be
added in the extensibility.

9.2 Database Objects

User has to update the corresponding seed data for the implementation of different extensibility features.

9.3 Extensibility Deployment

The new customized extensibility jars will be added in the extensibility libraries as ext.obp.host.domain for the
host middleware layer, ext.obp.ui.domain for Ul or presentation layer and ext.obp.soa.domain for the SOA
layer. These extensibility application libraries will be packaged and shipped as the separate library folders
along with the original library folders so that the extensibility feature can be added.

The OBP deployed applications shall reference these libraries so that customization jars included into these
get automatically referenced in the corresponding EAR and WAR files.

9 Deployment Guideline | 145



9.3 Extensibility Deployment

Figure 9—1 Extensibility Deployment

com.ofss.fc.middleware.ear

-
-

com.ofss fe.view. ear

com.ofss.fc.ui.view.war

-
e ext.obp.ui.domain

146 | Oracle Banking Enterprise Originations Ul Extensibility Guide



	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 About This Guide
	2 Objective and Scope
	2.1 Overview
	2.2 Objective and Scope
	2.2.1 Extensibility Objective

	2.3 Complementary Artefacts
	2.4 Out of Scope

	3 Overview of Use Cases
	3.1 Extensibility Use Cases
	3.1.1 ADF Screen Customization Using UI Extensions
	3.1.2 ADF Screen Customization Using MDS
	3.1.3 Print Receipt Functionality


	4 ADF Screen Customizations Using UI Extensions
	4.1 UI Extension Interface
	4.2 Default UI Extension
	4.3 UI Extension Executor
	4.4 Extension Configuration
	4.5 Customization Examples
	4.5.1 Replacing skin
	4.5.2 Changing the logo in the branding bar
	4.5.3 Modifying fonts
	4.5.4 Modifying images
	4.5.5 Graphics
	4.5.6 Adding a simple field to a product screen
	4.5.7 Adding a complex field popup to a product screen (popup, table, tree, region, tf)
	4.5.8 Removing an existing field from a product screen
	4.5.9 Making certain product optional product fields mandatory or optional
	4.5.10 Adding a new column to an existing product grid
	4.5.11 Hiding columns from an existing product grid
	4.5.12 Graying out certain columns from an existing product grid
	4.5.13 Modifying properties of product table (rows or tablesummary)
	4.5.14 Adding a new section to an existing product screen
	4.5.15 Hiding a section from a product screen
	4.5.16 Adding a new tab to an existing product screen made of tabs
	4.5.17 Hiding a tab from a product screen made of multiple tabs
	4.5.18 Adding new buttons or links
	4.5.19 Overriding / Customizing the product behaviour on certain actions like button clicks or tab-outs
	4.5.20 Overriding the product validation pattern
	4.5.21 Overriding the product lengths (min/max)
	4.5.22 Disable / Enable certain product fields
	4.5.23 Change certain product fields to read-only either on load or based on certain conditions
	4.5.24 Change label of existing product fields
	4.5.25 DC validation
	4.5.26 LOV Extension– LOV Delegate Pattern

	4.6 Using the JSFF Utils
	4.6.1 How to Use JSFF Utils
	4.6.2 Sample JSFF Utils Code Snippet


	5 ADF Screen Customizations Using MDS
	5.1 Seeded Customization Concepts
	5.2 Customization Layer
	5.3 Customization Class
	5.4 Enabling Application for Seeded Customization
	5.5 Customization Project
	5.6 Customization Role and Context
	5.7 Customization Layer Use Cases
	5.7.1 Adding a UI Table Component to the Screen
	5.7.2 Approvals Framework
	5.7.3 Override the product managedBean


	6 Human Task Screen Extension
	6.1 Introduction
	6.2 Custom CSS Skin
	6.2.1 Create New ADF Skin
	6.2.2 Apply New Skin


	7 Receipt Printing
	7.1 Prerequisite
	7.1.1 Identify Node Element for Attributes in Print Receipt Template
	7.1.2 Receipt Format Template (.rtf)

	7.2 Configuration
	7.2.1 Parameter Configuration in the BROPConfig.properties
	7.2.2 Configuration in the ReceiptPrintReports.properties

	7.3 Implementation
	7.3.1 Default Nodes

	7.4 Special Scenarios

	8 Extensibility Usage – OBP Localization Pack
	8.1 Localization Implementation Architectural Change
	8.2 Customizing UI Layer
	8.2.1 JDeveloper and Project Customization
	8.2.2 Generic Project Creation
	8.2.3 MAR Creation

	8.3 Source Maintenance and Build
	8.3.1 Source Check-ins to SVN
	8.3.2 .mar files Generated during Build
	8.3.3 adf-config.xml

	8.4 Packaging and Deployment of Localization Pack

	9 Deployment Guideline
	9.1 Customized Project Jars
	9.2 Database Objects
	9.3 Extensibility Deployment


